• Title/Summary/Keyword: Sintered reaction-bonded silicon nitride

Search Result 11, Processing Time 0.022 seconds

The behavior of Si During Sintering of Reaction Bonded Silicon Nitride (반응결합 질화수소의 소결시 규소의 거동에 관한 연구)

  • 김재룡;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.67-74
    • /
    • 1986
  • To investigate the effects of unreacted silicon on the $\alpha$/$\beta$transfornation variation of morphology and mechanical strength of Sintered Reaction Bonded Silicon Nitride the mixtures of $\alpha$-$Si_3N_4$ and Si powder and Reaction Bonded Silicon Nitride were heat treated. The heat-treatments were performed in Ar atmosphere in order to inhibit the nitridation of silicon. In the mixtures heat-trated at 1$700^{\circ}C$ the amount of $\beta$-TEX>$Si_3N_4$transformed from $\alpha$-TEX>$Si_3N_4$was sigmoidally increased and the equiaxed $\alpha$-TEX>$Si_3N_4$grains elongated with the amount of silicon and heat treating time. And large $\beta$-TEX>$Si_3N_4$grains grown into silicon were observed. On the other hand there was no change in the heat-treatment of pure $\alpha$-TEX>$Si_3N_4$In case of the heat-treatment of RBSN the same phenomena due to the silicon appearing from the decomposition of $\alpha$-Smatte and needle were observed. From the three point bending test the strength of the sintered specimens with the and without 5wt% silicon addition had 53Kg/$mm^2$ and 73Kg/$mm^2$ respectively.

  • PDF

Effects of Debinding Atmosphere on Properties of Sintered Reaction-bonded Si3N4 Prepared by Tape Casting Method

  • Park, Ji-Sook;Lee, Sung-Min;Han, Yoon-Soo;Hwang, Hae-Jin;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.622-627
    • /
    • 2016
  • The effects of the debinding atmosphere on the properties of sintered reaction-bonded $Si_3N_4$ (SRBSN) ceramics prepared by tape casting method were investigated. Si green tape was produced from Si slurry of Si powder, using 11.5 wt% polyvinyl butyral as the organic binder and 35 wt% dioctyl phthalate as the plasticizer. The debinding process was conducted in air and $N_2$ atmospheres at $400^{\circ}C$ for 4 h. The nitridation process of the debinded Si specimens was performed at $1450^{\circ}C$, followed by sintering at $1850^{\circ}C$ and 20 MPa. The results revealed that the debinding atmosphere had a significant effect on $Si_3N_4$ densification and thermal conductivity. Owing to the higher sintered density and larger grain size, the thermal conductivity of $Si_3N_4$ specimens debinded in air was higher than that of the samples debinded in $N_2$. Thus, debinding in air could be suitable for the manufacture of high-performance SRBSN substrates by tape casting.

Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders (조대 Si입자분말을 사용한 질화반응 Si3N4의 치밀화 거동)

  • 이주신;문지훈;한병동;박동수;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • Effect of sintering additives on the densification behavior of reaction-bonded silicon nitride prepared by using coarse Si powders is discussed. Sintering additives such as 6 wt% $Y_2O_3$+1wt% $A1_2O_3$ (6YlA) did not give rise to full densification, while full densification was obtained by using the sintering additives such as 6wt% $Y_2O_3$+3 wt% $A1_2O_3$+ 2wt% $SiO_2$ (6Y3A2S) and 9wt% $Y_2O_3$+ 1.5wt% $A1_2O_3$+ 3wt% $SiO_2$ (9Yl.5A3S). In the case of 6Y3A2S addition, high fracture strength of 960 MPa and the fracture toughness of $6.5 MPa.m^{1/2}$ were obtained.

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.

Fabrication of β-SiAlONs by a Reaction-Bonding Process Followed by Post-Sintering

  • Park, Young-Jo;Noh, Eun-Ah;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.452-455
    • /
    • 2009
  • A cost-effective route to synthesize $\beta$-SiAlONs from Si mixtures by reaction bonding followed by post-sintering was investigated. Three different z values, 0.45, 0.92 and 1.87, in $Si_{6-z}Al_zO_zN_{8-z}$ without excess liquid phase were selected to elucidate the mechanism of SiAlON formation and densification. For RBSN (reaction-bonded silicon nitride) specimens prior to post-sintering, nitridation rates of more than 90% were achieved by multistep heating to $1400^{\circ}C$ in flowing 5%$H_2$/95%$N_2$; residual Si was not detected by XRD analysis. An increase in density was acquired with increasing z values in post-sintered specimens, and this tendency was explained by the presence of higher amounts of transient liquid phase at larger z values. Measured z values from the synthesized $\beta$-SiAlONs were similar to the values calculated for the starting compositions. Slight deviations in z values between measurements and calculations were rationalized by a reasonable application of the characteristics of the nitriding and post-sintering processes.

Effect of Raw-Si Particle Size on the Mechanical Properties of Sintered RBSN (출발 Si 분말의 입자크기에 따른 Sintered RBSN의 기계적특성 변화)

  • 이주신;문지훈;한병동;박동수;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.740-748
    • /
    • 2001
  • 출발원료 Si 분말의 입자크기를 다양하게 하여 질화반응 및 가스압 소결시 입자크기에 따른 산소함량의 차이에서 나타나는 상변화와 그로 인한 치밀화 거동, 미세구조 발달 및 기계적 특성에 대하여 고찰하였다. 145$0^{\circ}C$의 질화반응에서는 조대분말을 사용한 경우가 미세분말을 사용한 경우보다 높은 질화율을 나타냈으며, 각 분말크기에 따른 native oxide의 함량차에 따라 각기 다른 2차 결정상들이 검출되었다. 조대분말을 사용한 경우에는 제 2상의 석출로 인한 액상량의 부족으로 고온의 소결온도에서도 치밀화를 이루지 못해 낮은 강도값을 나타내었다. 한편, 미세분말을 사용한 경우에는 질화반응 후 석출된 제 2상이 소결온도가 증가함에 따라 용융되면서 치밀화를 이루어 높은 강도값을 나타내었다. 높은 강도값은 미세분말을 사용한 시편들에서 얻어졌으나 높은 파괴인성값은 상대적으로 큰 분말을 사용한 시편들에서 얻어졌는데, 이는 미세한 입자들로 구성된 기지상 내에 잘 발달된 주상정 입자들을 갖는 미세구조에 기인된 것으로 사료된다.

  • PDF

Densification and Mechanical Properties of Silicon Nitride Containing Lu2O3-SiO2 Additives (Lu2O3-SiO2계 소결조제를 포함하는 Silicon Nitride의 소결 특성 및 기계적 거동)

  • Lee, Sea-Hoon;Jo, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.384-389
    • /
    • 2011
  • Gas pressure sintering (GPS) of reaction bonded silicon nitride (RBSN) was performed using $Lu_2O_3-SiO_2$ additive and the properties were compared with those of specimens prepared using high purity $Si_3N_4$ powder. The relative density of RBSN and compacted $Si_3N_4$ powder were 68.9 and 47.1%, and total linear shrinkage after sintering at $1900^{\circ}C$ were 14.8 and 42.9%, respectively. High nitrogen partial pressure (5MPa) was required during sintering at $1900^{\circ}C$ in order to prevent the decomposition of the nitride and to promote the formation of SiC. The relative density and 4-point bending strength of RBSN and $Si_3N_4$ powder compact were 97.7%, 954MPa and 98.2%, 792MPa, respectively, after sintering at $1900^{\circ}C$. The sintered RBSN also showed high fracture toughness of 9.2MPam$^{1/2}$.

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon;Ko, Jae-Woong;Park, Young-Jo;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.318-324
    • /
    • 2012
  • Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.472-478
    • /
    • 2006
  • The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.