• Title/Summary/Keyword: Sintered density

Search Result 1,250, Processing Time 0.032 seconds

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation (소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상)

  • Kim, Gwanghun;Jeon, Junhyub;Seo, Namhyuk;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.

Fabrication of diamond/W-Cu functionally graded material by microwave sintering

  • Wei, Chenlong;Cheng, Jigui;Zhang, Mei;Zhou, Rui;Wei, Bangzheng;Yu, Xinxi;Luo, Laima;Chen, Pengqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.975-983
    • /
    • 2022
  • A four-layered W/Cu functionally graded material (FGM) (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W60% + Cu40%, wt.% fraction) and a four-layered diamond/W-Cu FGM (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W55% + Cu40% + diamond5%, wt.% fraction) were fabricated by microwave sintering. The thermal conductivity and thermal shock resistance of diamond/W-Cu FGM and W-Cu FGM were investigated. The morphologies of the diamond particles and different FGMs were analyzed using AFM, SEM, EDS, and TEM. The results show that a 200 nm rough tungsten coating was formed on the surface of the diamond. The density of the tungsten-coated diamond/W-Cu FGM, obtained by microwave sintering at 1200 ℃ for 30 min, was 94.66%. The thermal conductivity of the fourlayered diamond/W-Cu FGM was 220 W·m-1·K-1, which is higher than that of the four-layered W/Cu FGM (209 W m-1 K-1). This indicates that adding an appropriate amount of tungsten-coated diamond to the high Cu layer W/Cu FGM improves the thermal conductivity of the composite. The diamond/W-Cu FGM sintered at 1200 ℃ for 10 min exhibited better thermal shock resistance than diamond/W-Cu FGM sintered at 1100 ℃ for 10 min.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

Low Temperature Sintering and Dielectric Properties of CaCO3-Al2O3 Mixture and Compound with CAS-based Glass (CAS계 유리가 첨가된 CaCO3-Al2O3 혼합물 및 화합물의 저온 소결 및 유전 특성)

  • Yoon, Sang-Ok;Kim, Myung-Soo;Kim, Kwan-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.397-404
    • /
    • 2009
  • Effects of ceramic filler types and dose on the low temperature sintering and dielectric properties of ceramic/$CaO-Al_2O_3-SiO_2$ (CAS) glass composites were investigated. All of the specimens were sintered at $850{\sim}900^{\circ}C$ for 2 h, which conditions are required by the low-temperature co-firing ceramic (LTCC) technology. Ceramic fillers of $CaCO_3$, $Al_2O_3$, $CaCO_3-Al_2O_3$ mixture, and $CaCO_3-Al_2O_3$ compound ($CaAl_2O_4$), respectively, were used. The addition of $Al_2O_3$ yielded the crystalline phase of alumina, which was associated with the inhibition of sintering, while, $CaCO_3$ resulted in no apparent crystalline phase but the swelling was significant. The additions of $CaCO_3-Al_2O_3$ mixture and $CaAl_2O_4$, respectively, yielded the crystalline phases of alumina and anorthite, and the sintering properties of both composites increased with the increase of filler addition and the sintering temperature. In addition, the $CaAl_2O_4$/CAS glass composite, sintered at $900^{\circ}C$, demonstrated good microwave dielectric properties. In overall, all the investigated fillers of 10 wt% addition, except $CaCO_3$, yielded reasonable sintering (relative density, over 93 %) and low dielectric constant (less than 5.5), demonstrating the feasibility of the investigated composites for the application of the LTCC substrate materials.

Sintering Behavior of Borate-Based Glass Ceramic Solid Electrolytes for All-Solid Batteries (전고체전지용 붕산염 유리 세라믹 고체 전해질의 조성비에 따른 소결 특성 연구)

  • Jeong Min Lee;Dong Seok Cheong;Sung Hyun Kang;Tirtha Raj Acharya;Eun Ha Choi;Weon Ho Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.445-450
    • /
    • 2024
  • The expansion of lithium-ion battery usage beyond portable electronic devices to electric vehicles and energy storage systems is driven by their high energy density and favorable cycle characteristics. Enhancing the stability and performance of these batteries involves exploring solid electrolytes as alternatives to liquid ones. While sulfide-based solid electrolytes have received significant attention for commercialization, research on amorphous-phase glass solid electrolytes in oxide-based systems remains limited. Here, we investigate the glass transition temperatures and sintering behaviors by changing the molecular ratio of Li2O/B2O3 in borate glass comprising Li2O-B2O3-Al2O3 system. The glass transition temperature is decreasing as increasing the amount of Li2O. When we sintered at 450℃, just above the glass transition temperature, the samples did not consolidate well, while the proper sintered samples could be obtained under the higher temperature. We successfully obtained the borate glass ceramics phases by melt-quenching method, and the sintering characteristics are investigated. Future studies could explore optimizing ion conductivity through refining processing conditions, adjusting the glass former-to-modifier ratio, and incorporating additional Li salt to enhance the ionic conductivity.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Inkjet Printing Process to Fabricate Non-sintered Low Loss Density for 3D Integration Technology (잉크젯 프린팅 공정을 이용한 3D Integration 집적 기술의 무소결 고충진 유전체막 제조)

  • Jang, Hun-Woo;Kim, Ji-Hoon;Koo, Eun-Hae;Kim, Hyo-Tae;Yoon, Young-Joon;Hwang, Hae-Jin;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.192-192
    • /
    • 2009
  • We have successfully demonstrated the inkjet printing process to fabricate $Al_2O_3$ thick films without a high temperature sintering process. A single solvent system had a coffee ring pattern after printing of $Al_2O_3$ dot, line and area. In order to fabricate the smooth surface of $Al_2O_3$ thick film, we have introduced a co-solvent system which has nano-sized $Al_2O_3$ powders in the mixture of Ethylene glycol monomethyl ester and Di propylene glycol methyl ether. This co-solvent system approached a uniform and dense deposition of $Al_2O_3$ powders on the substrate. The packing density of inkjet-printed $Al_2O_3$ films is more than 70% which is very high compared to the value obtained from the films synthesized by other conventional methods such as casting processes. The characterization of the inkjet-printed $Al_2O_3$ films has been implemented to investigate its thickness and roughness. Also the dielectric loss of the films has been measured to understand the feasibility of its application to 3D integration package substrate.

  • PDF

Study on manufacturing and operating characteristics of Magnetic cores for Flat TR (Flat TR용 핵심 쿄아의 제조와 동작 특성 안정화 연구)

  • Han, Se-Won;Cho, Han-Goo;Yu, Dong-Uk;Ryu, Mung-Ho;Choi, Kwang-Bo;Kim, Sung-Ba
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.23-26
    • /
    • 2003
  • The flat transformer, typically, has a number of parallel single turn secondary windings. Each secondary winding is coupled to the same primary winding. Therefore, the current in each secondary winding is equal to the ampere-turns in the primary winding, and to each other. These characteristics are particularly advantageous where parallel rectifiers are used. The windings share the current equally, with no need for ballast resistors or other added components. In this study, the ferrite magnetic core samples of Mn-Zn system for the Flat transformer are manufactured and the electrical and magnetic characteristics of its tested. The density of sample FO2-2 sintered at $1350^{\circ}C$ is $4.00kg/m^3$, which shows the good microstructural state. The initial permeability and saturation flux density of FO2 at room temperature is 2700 and 510mT, individually. The power loss of FO2 samples at 250kHz have been ranged $350kW/m^3$ to $80kW/m^3$ with temperature. And the minimum power loss of sample FO2-2 showed at $70^{\circ}C$, which property seems very positive to apply for a flat transformer.

  • PDF

Effect of Mn Addition on Sintering Properties of Ti-10wt.%Al-xMn Powder Alloy (Ti-10wt.%Al-xMn 분말합금의 Mn첨가에 따른 소결특성 평가)

  • Shin, Gi-Seung;Hyun, Yong-Taek;Park, Nho-Kwang;Park, Yong-Ho;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.235-241
    • /
    • 2017
  • Titanium alloys have high specific strength, excellent corrosion and wear resistance, as well as high heat-resistant strength compared to conventional steel materials. As intermetallic compounds based on Ti, TiAl alloys are becoming increasingly popular in the aerospace field because these alloys have low density and high creep properties. In spite of those advantages, the low ductility at room temperature and difficult machining performance of TiAl and $Ti_3Al$ materials has limited their potential applications. Titanium powder can be used in such cases for weight and cost reduction. Herein, pre-forms of Ti-Al-xMn powder alloys are fabricated by compression forming. In this process, Ti powder is added to Al and Mn powders and compressed, and the resulting mixture is subjected to various sintering temperature and holding times. The density of the powder-sintered specimens is measured and evaluated by correlation with phase formation, Mn addition, Kirkendall void, etc. Strong Al-Mn reactions can restrain Kirkendall void formation in Ti-Al-xMn powder alloys and result in increased density of the powder alloys. The effect of Al-Mn reactions and microstructural changes as well as Mn addition on the high-temperature compression properties are also analyzed for the Ti-Al-xMn powder alloys.

Glass-Ceramics of $Li_2O-Al_2O_3-SiO_2$ System Produced by Sintering (소결법에 의한 $Li_2O-Al_2O_3-SiO_2$계 결정화 유리의 제조)

  • 연석주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.176-184
    • /
    • 1993
  • The glasses, which the $\beta$-spodumene as the principal crystalline phase could be precipitated, were melted by adding >, $P_2O_5, TiO_2, ZrO_2 in the Li_2O-Al_2O_3-SiO_2$ system. In order to achieve the glass-ceramic body of near-theoritical density by sintering method, the optimum condition of heat treatment, the effect of glass powder size and the properties were investigated by DTA, XRD, bulk density, thermal expansion and SEM. Addition of $P_20_5$ imProved the tendency of sintering and the sample with 9wt% $P_20_5$ content was the most dense OOdy by sintering method. The optimum condition of heat treatmemt was sintered for densitification at $740^{\circ}C$ and crystallized at $950^{\circ}C$. In the optimum condition, the relative density was above 90% and the thermal expansion was negative about $-1{\times}10^{-7}/^{\circ}C$.

  • PDF