• Title/Summary/Keyword: Sintered Powder

Search Result 1,364, Processing Time 0.028 seconds

Study on Tensile Properties of Polyamide 12 produced by Laser-based Additive Manufacturing Process (레이저 적층제조기술로 제작한 폴리아미드 12 시편의 인장특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.217-223
    • /
    • 2019
  • The application of 3D printing technology is expanding due to the production of the complex-shape parts and the one-step manufacturing process. Moreover, various technical solutions in 3D printing are emerging through continuous research and development. Representative technologies include SLS technology, in which a desired area is sintered and laminated by irradiating a powder-type material with a laser. In addition, high-performance engineering plastic parts are being manufactured in increasing numbers. In this study, tensile specimens were fabricated from polyamide 12, a widely available polymer, and the glass bead-reinforced polyamide 12. The specimen-build orientation was divided into 0°, 45°, and 90° on the fabrication platform, and the tensile test temperature was -25℃, 25℃, and 60℃. The test results showed that the tensile modulus of both materials decreases as the build orientation becomes closer to 90°. In addition, the tensile strength of glass bead-reinforced PA12 showed more dependence on the build orientation than PA12. In addition, the tensile modulus and tensile strength decreased with increasing test temperature.

Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering (무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

Peculiarities of ReBaCuO superconductor preparation

  • Fan, Zhanguo;Soh, Dea-Wha;Li, Ying-Mei;Park, Jung-Cheol;Korobova, N
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.913-916
    • /
    • 2001
  • From 1994 the cooperation between NEU of China and MJU of South Korea for study of ReBaCuO (Re=Rare earth elements) superconductors has been carried out. The progress has been got in following projects. Critical current density ($J_c$) of YBaCuO superconductor prepared by Melting Textured Growth (MTG) was improved. In the preparation of textured YBaCuO, 20 wt.% of YBaCuO 211 phase was added, which would be climactic for the microcracks in the textured YBaCuO. The effects of the 211 phase and Ag content on the superconductivity were studied and discussed in detail. The improved $J_c$ value was reached to 8$\times$10^4 A/cm^2 (77K,0T). Single phase $YbBa_{2}Cu_{3}O_{x}$ superconductor was sintered by the traditional powder metallurgical method, and its reaction process was studied. In recent years, NdBaCuO superconductor is being performed. The behavior of $Nd_{4}Ba_{2}Cu_{2}O_{10}$(Nd422 phase) and the solid solubility, x in the superconductor $Nd_{1+x}Ba_{2-x}Cu_{3}O_{y}$ by the heat treatment in the low oxygen partial pressure (1%) or Ar at $950{\circ}C$ were investigated. The zone-melting process was used to make oriented NdBaCuO superconductor in order to increase the critical current density.

  • PDF

A study on the properties of thin films using a $Cu_2ZnSnS_4$ compound target (화합물 $Cu_2ZnSnS_4$ bulk 타겟을 사용하여 제조한 박막 특성에 관한 연구)

  • Seol, Jae-Seung;Jung, Young-Hee;Nam, Hyo-Duck;Bae, In-Ho;Kim, Kyoo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.869-873
    • /
    • 2002
  • $Cu_2ZnSnS_4$ (CZTS) thin film is one of the candidate materials for the solar cell. It has an excellent optical absorption coefficient as well as appropriate 1.4~1.5eV band gap. The purpose of this study is replacing a half of high-cost Indium(In) atoms with low-cost Zinc(Zn) atoms and the other half with low-cost Tin(Sn) atoms in the lattice of CIS. In annealing process of thin films deposited with mixture target, the thin films were appeared the peeling. The resistivity was decreased. Thin films were deposited on ITO glass substrates using a compound target which were made by $CU_2S$, ZnS, $SnS_2$ powder were sintered in the atmosphere of Al at room temperature by rf magnetron sputtering We investigated potentialities of a low-cost material for the solar cell by measuring of thin film composition, the structure and optical properties. We could get an appropriate $Cu_2ZnSnS_4$ composition A (112) preferred orientation was appeared without annealing temperature as shown in the diffraction peaks of the CIS cells and was available for photovoltaic thin film materials. The band gap increased from 1.4 to 1.7eV as the composition ratio of Zn/Sn.. The optical absorption coefficient of the thin film was above $10^4cm^{-1}$.

  • PDF

Microstructural properties of Pt-doped $YBa_{2}Cu_{3}O_{7-x}$ high $T_c$ superconductor prepared by melting method.

  • Song, Jin-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.16-16
    • /
    • 1992
  • We have studied the effect of platinum addition on the supercon ducting properties of YB $a_2$C $u_3$$O_{7-x}$ (123) compound and elucidated the mechanism of fine dispersion of $Y_2$BaCu $O_{5}$(211) particles in YB $a_2$C $u_3$$O_{7-x}$ superconductor prepared by melting method from the metallurgical point of view. In this study, BaCu $O_2$ and CuO-rich phase unreacted during the peritecitc reaction markedly decreased by the 211 powder addition. The 211 particle of Pt-fee sintered samples exhibited 8~10$\mu$m in size, but in 1wt%Pt-added sample, 211 particles were finely dispersed in 123 matrix and the size of 211 particle was about 1~2$\mu$m. And, the critical temperature( $T_{c. zero}$) of Pt doped samples was 91.5K and the transport critical current density ( $J_{c}$) of Pt-doped samples was much more than 10$^4$A/$\textrm{cm}^2$. The high $J_{c}$ and fine dispersion of 211 particles of Pt doped YB $a_2$C $u_3$$O_{7-x}$ superconductor are attributed to $Ba_4$CuP $t_2$ $O_{8}$ compounds formed during the partial melting, which were considered als nucleation sites of 211 particles, rather than Pt inself.han Pt inself.

  • PDF

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Fabrication of a MnCo2O4/gadolinia-doped Ceria (GDC) Dual-phase Composite Membrane for Oxygen Separation

  • Yi, Eun-Jeong;Yoon, Mi-Young;Moon, Ji-Woong;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • A dual-phase ceramic membrane consisting of gadolinium-doped ceria (GDC) as an oxygen ion conducting phase and $MnCo_2O_4$ as an electron conducting phase was fabricated by sintering a GDC and $MnCo_2O_4$ powder mixture. The $MnCo_2O_4$ was found to maintain its spinel structure at temperatures lower than $1200^{\circ}C$. (Mn,Co)(Mn,Co)$O_4$ spinel, manganese and cobalt oxides formed in the sample sintered at $1300^{\circ}C$ in an air atmosphere. XRD analysis revealed that no reaction phases occurred between GDC and $MnCo_2O_4$ at $1200^{\circ}C$. The electrical conductivity did not exhibit a linear relationship with the $MnCo_2O_4$ content in the composite membranes, in accordance with percolation theory. It increased when more than 15 vol% of $MnCo_2O_4$ was added. The oxygen permeation fluxes of the composite membranes increased with increasing $MnCo_2O_4$ content and this can be explained by the increase in electrical conductivity. However, the oxygen permeation flux of the composite membranes appeared to be governed not only by electrical conductivity, but also by the microstructure, such as the grain size of the GDC matrix.

Fracture Behaviour of PSZ Composite (부분 안정화 지르코니아의 파괴거동)

  • Kim, Hwan;Lim, Eung-Keuk;Koh, Jeong-Kyu;Hwang, Kyu-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.239-244
    • /
    • 1984
  • The effect of tetragonal $ZrO_2$ phase on the mechanical behavior in 7 mole% calcia partially stabilized zirconia has been studied. The $ZrO_2$ powder containg 7 mole% CaO prepared by Hot Petroleum Drying Method calcined at 80$0^{\circ}C$ for 1 hour was nearly 100% tetragonal but as the calcining temperature increased certain amount of monoclinic phase appeared. The sintered specimen at 1$700^{\circ}C$ for 5 hours was aged at 130$0^{\circ}C$ for 0, 24, 48, 72 hours. X-ray diffraction data showed that in the aged specimen monoclinic tetragonal and cubic phase coexisted. The Kc value of aged specimen for 48 hr was about 4.5MN/m3/2 much greater than unaged sample. But aged for 72 hr the KiC value was decreased. The increasing of toughness in PSZ is based on the Stress-Induced Phase Transformation that is metastable tetra-gonal $ZrO_2$ changes t stable monoclinic phase within the stress field of crack and the mechanical fracture energy absorption is occured But in this case due to certain amount of tetragonal phase transformed to monoclinic phase during cooling the microcrack effect by transformation also considered. Trerefore both Stress-Induced Phase Transformation and inclusion induced microcracking effect contrbute to the increase of fracture toughness of 7 mole% CaO-$ZrO_2$ containing monoclinic and tetragnola phase simulataneously.

  • PDF

A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size (반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구)

  • Kim, Young-Ju;Park, Young-Shik;Jung, Youn-Woong;Song, Jun-Baek;Park, So-Young;Im, Hang-Joon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • For the manufacture of low resistance Si-SiC composite, the properties of reaction sintering in the green body of various mixed ${\alpha}$-SiC powder size with the various carbon contents from 0wt% to 20wt% were investigated. The samples preparation was green body by CIP method under this condition, molten silicon infiltration process was conducted to reaction bonded silicon carbide. the results of sintered density, 3-point bending strength and resistance of analysis showed that varied carbon and silicon melt reacted to convert to fine ${\beta}$-SiC particle and the structure was changed to dense material. The amount of fine ${\beta}$-SiC particle was gradually increased as carbon content increase. According to mixed composite, it's mechanical and specific resistivity properties was strongly influenced by carbon content within 10wt% more then carbon content 10wt% was strongly influenced by phase transition.