• Title/Summary/Keyword: Sintered AlN

Search Result 118, Processing Time 0.027 seconds

Pressureless Sintered Nitride Composites in the AlN-Al2O3 System (AlN-Al2O3 계에서의 상압소결 질화물복합체)

  • Kim, Young Woo;Kim, Kyu Heon;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.498-504
    • /
    • 2014
  • Particulate nitride composites have been fabricated by sintering the compacted powder of AlN and 5 - 64.3 mol% $Al_2O_3$, with a small addition of $Y_2O_3$ ($Y_2O_3$/AlN, 1 wt%), in 1-atm nitrogen gas at $1650-1900^{\circ}C$. The composites were characterized in terms of sintering behavior, phase relations, microstructure and thermal shock resistance. AlN, 27R AlN pseudopolytype, and alminium oxynitride (AlON, $5AlN{\cdot}9Al_2O_3$) were found to existin the sintered material. Regardless of batch composition, the AlN-$Al_2O_3$ powder compacts exhibited similar sintering behavior; however, the degree of shrinkage commonly increased with increasing $Al_2O_3$ content, consequently giving high sintered bulk density. By increasing the $Al_2O_3$ addition up to ${\geq}50 mol%$, the matrix phase in the sintered material was converted from AlN or 27R to AlON. Above $1850^{\circ}C$, a liquid phase was formed by the reaction of $Al_2O_3$ with AlN, aided by $Y_2O_3$ and mainly existed at the grain boundaries of AlON. Thermal shock resistance was superior in the sintered composite consisting of AlON with dispersed AlN or AlN matrix phase.

Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN Composite (상압소결에 의하여 제조된 SiC-AlN 복합체에서의 고용체 형성과 미세구조)

  • Lee, Jong-Kook;Kim, Duk-Jun;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.785-792
    • /
    • 1996
  • Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN compo-site using oxides as a sintering aid at 185$0^{\circ}C$ and 195$0^{\circ}C$ Regardless of SiC/AlN ratio in composition most of sintered specimens showed he complex structure mixed with 2H solid solution and SiC particles. High sintering temperature and large AlN content in starting composition enhanced the formation of 2H solid solution in sintered specimen 2H solid solution showed the spherical shape and core-rim structure. AlN content in the core is higher than that in the rim but SiC content . The size of 2H solid solution on fracture showed the transgranular fracture mode compared with the dispersed SiC particles which showed the intergranular fracture mode.

  • PDF

Effect of Al2O3 and SiC Whisker on Sintering and Mechanical Properties of Si3N3 Bonded SiC (첨가제 $Al_2O_3$ 및 SiC Whisker가 $Si_3N_3$ 결합 SiC 소결체 특성에 미치는 영향)

  • 백용혁;신종윤;정종인;권양호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.837-842
    • /
    • 1992
  • SiC and Si mixtures dispersed by 0.5~10.0 wt% of Al2O3 and reinforced by SiC whisker were sintered to Si3N4 bonded SiC bodies at 140$0^{\circ}C$ in a N2 gas atmosphere, and the nitridation and mechanical properties of sintered bodies were investigated. From these observation, it is concluded that relative density and bending strength increased with the rising of nitridation and the highest nitridation ratio was obtained for a specimen having 1.5 wt% Al2O3. On the other hand, the amount of $\beta$-Si3N4 in the specimens containing Al2O3 more than 5.0 wt% was increased abruptly and the best in fracture toughness was sintered for a composits having 30 wt% SiC whiskers.

  • PDF

Study on the properties of aluminum nitride sintered using an induction furnace without sintering additives (소결조제 없이 유도가열로를 이용해 소결된 질화알루미늄의 특성 연구)

  • Hyo Min Choi;Kyung-Pil Yin;Jong-Won Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.98-102
    • /
    • 2024
  • In this study, the crystal characteristics of commercial AlN powders with sizes of "㎛" and "nm" were selected through XRD analysis and then sintered at different temperatures through an induction heating furnace to investigate the optimized sintering temperature and physical properties. The sintering temperature was 1,500, 1,700, and 1,900℃ in the N2 atmosphere, and the optimized sintering temperature conditions were established for the sintered AlN pellets using SEM, XRD, and Raman analysis. Additionally, impedance analysis was performed to confirm the electrical properties of the optimized AlN pellet without sintering additives.

Synthesis of Powder of the System Si-Al-O-N from Alkoxides II. Properties of Powders and Sintered Ceramics of Si3N4 and $\beta$-Sialon Prepared from Alkoxides (알콕사이드로부터 Si-Al-O-N계 분말합성 II. 알콕사이드로부터 합성한 Si3N4 및 $\beta$-Sialon의 분말 및 소결체의 특성)

  • 이홍림;전명철
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.201-209
    • /
    • 1989
  • Fine Si-Al-OH coprecipitate powders were prepared from Si- and Al-alkoxides by the hydrolysis method. $\beta$-Sialon powder was obtained from prepared Si-Al-OH coprecipitate by the simultaneous reduction and nitridation method. The syntehsized Sialon powder was pressureless sintered at 175$0^{\circ}C$ for 90 min in N2 atmosphere. The characterization of the Sialon powder was performed with XRD, BET, SEM, TEM and particle size analysis. The sinterability and mechanical properties of sintered bodies were investigated in terms of relative density, M.O.R., fracture toughness, hardness and the morphology of microstructure. The highest values of their mechanical properties were obtained for the $\beta$-Sialon ceramics at Z=1 and those values are as follows : M.O.R., KIC and HV of $\beta$-Sialon ceramics(Z=1) are 499.1 MPa, 5.9MN/m3/2 and 18.7GPa, respectively.

  • PDF

Mechanical Properties of $Al_2O_3-AlN$ Particulate Composite ($Al_2O_3-AlN$계 입자복합체의 기계적 성질)

  • 김영우;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.101-109
    • /
    • 1996
  • The mechanical propertieso f sintered AlN with the addition of alumina were investigated The flexural strength of the AlN dispersed ALON specimens was higher than that of ALON and fracture toughness showed similar tendency. The high-temperature flexural strength of specimens which 50 and 64.3 mol% alumina was added to AlN was constant up to 100$0^{\circ}C$ with about 290 and 420 MPa respectively but abruptly decreased at 120$0^{\circ}C$ In the specimens which contained 5 and 30mol% alumina the flexural strength increased to about 14% at 100$0^{\circ}C$ and did not decrease at 120$0^{\circ}C$ compared to at room temperature.

  • PDF

Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of Y2O3 Content and Sintering Condition (Y2O3 함량과 소결조건에 따른 상압소결 AlN 세라믹스의 열전도도 고찰)

  • Na, Sang-Moon;Go, Shin-Il;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.368-372
    • /
    • 2011
  • Aluminum nitride (AlN) has excellent thermal conductivity, whereas it has some disadvantage such as low sinterability. In this study, the effects of sintering additive content and sintering condition on thermal conductivity of pressureless sintered AlN ceramics were examined on the variables of 1~3 wt% sintering additive ($Y_2O_3$) content at $1900^{\circ}C$ in $N_2$ atmosphere with holding time of 2~10 h. All AlN specimens showed higher thermal conductivity as the $Y_2O_3$ content and holding time increase. The formation of secondary phases (yttrium aluminates) by reaction of $Y_2O_3$ and $Al_2O_3$ from AlN surface promoted the thermal conductivity of AlN specimens, because the secondary phases could reduce the oxygen contents in AlN lattice. Also, thermal conductivity was increased by long sintering time because of the uniform distribution and the elimination of the secondary phases at the grain boundary by the evaporation effect during long holding time. A carbothermal reduction reaction was also affected on the thermal conductivity. The thermal conductivity of AlN specimens sintered at $1900^{\circ}C$ for 10 h showed 130~200W/mK according to the content of sintering additive.

Effect of Screen Printing and Sintering Conditions on Properties of Thick Film Resistor on AlN Substrate (인쇄 및 소결조건이 AlN 기판용 후막저항체의 특성에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.344-349
    • /
    • 2014
  • $RuO_2$-based high frequency thick-film resistor paste was printed at the speed of 10, 100, 300 mm/sec on the AlN substrate, and then sintered at between 750 and $900^{\circ}C$. The sintered thick films were characterized in terms of printing and sintering conditions. With increasing printing speed, the thickness and roughness of sintered film increased. The resistance of the thick film resistor was reduced by increasing the printing speed from 10 to 100 mm/sec, but did not significantly change at 300 mm/sec speed. With increasing sintering temperature, the surface roughness and thickness of sintered resistor film decreased. The reduction rate was large in case of fast printed resistor. The resistance of the resistor increased up to $800^{\circ}C$ with sintering temperature, but again decreased at the higher sintering temperature.

Insulating Behavior of Sintered AlN Ceramics Prepared by High-Energy Bead Milling of AlN Powder (AlN 분말의 고에너지 밀링에 따른 소결체의 절연 특성)

  • Ryu, Sung-Soo;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.444-449
    • /
    • 2017
  • Aluminum nitride (AlN) powder specimens are treated by high-energy bead milling and then sintered at various temperatures. Depending on the solvent and milling time, the oxygen content in the AlN powder varies significantly. When isopropyl alcohol is used, the oxygen content increases with the milling time. In contrast, hexane is very effective at suppressing the oxygen content increase in the AlN powder, although severe particle sedimentation after the milling process is observed in the AlN slurry. With an increase in the milling time, the primary particle size remains nearly constant, but the particle agglomeration is reduced. After spark plasma sintering at $1400^{\circ}C$, the second crystalline phase changes to compounds containing more $Al_2O_3$ when the AlN raw material with an increased milling time is used. When the sintering temperature is decreased from $1750^{\circ}C$ to $1400^{\circ}C$, the DC resistivity increases by approximately two orders of magnitude, which implies that controlling the sintering temperature is a very effective way to improve the DC resistivity of AlN ceramics.

Phase and Microstructure of SiC-AlN Ceramics Prepared by Pressureless Sintering (상압소결에 의하여 제조된 SiC-AlN 세라믹스의 상 및 미세구조)

  • Choi, Woong;Lee, Jong-Kook;Cho, Duk-Ho;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1308-1314
    • /
    • 1995
  • Changes in phase and microstructure were investigated in the SiC-AlN ceramics prepared by pressureless sintering using yttrium aluminum garnet (YAG) as a sintering aid at 200$0^{\circ}C$ and 210$0^{\circ}C$. The SiC/AlN ratio made a remarkable difference in densification, phase relations and the morphology of grains. In the AlN-rich composition, major phase was 2H and microstructure was composed of the densified equiaxed grains irrespective of the sintering temperatures. While those sintered at 200$0^{\circ}C$ were porous with major phase being 3C, the rod-like and the equiaxed grains were coexisted when sintered at 210$0^{\circ}C$ in the SiC-rich composition.

  • PDF