• Title/Summary/Keyword: Sink Flow

Search Result 250, Processing Time 0.02 seconds

Natural Cooling Characteristics of a Heat Sink for LED Headlight used in Passenger Cars (승용 전조등 LED 램프의 방열판 자연 냉각특성)

  • Yoo, Jae-Young;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 2017
  • The objective of this study is to investigate the cooling characteristics of a heat sink for an LED headlight used in passenger cars. To this end, this study conducts the experimental and numerical analysis of the heat sink heated at constant heat fluxes without air flow applied. In the experiments, heat was transferred at a constant heat flux through the bottom of a heat sink. The measured temperature on pre-selected locations of the heat sink was in good agreement with the numerically predicted one. The experimental and numerical results indicate that the convective heat transfer coefficient for the natural convection mode was decreased by increasing the heat flux applied to the bottom of heat sink, lowering the cooling capabilities.

Thermal Analysis of Heat Sink Models using CFD simulation (CFD를 이용한 히트싱크의 열 해석)

  • Lim, Song-Chul;Lee, Myung-Ho;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.829-832
    • /
    • 2005
  • Thermal analysis of new designed heat-sink models was carried out according to the natural ana the forced convection using computational fluid dynamics(CFD). Heat resistance of wave type, top vented wave type and plate type of heat sink was compared with each other As the direction of fin and air flow are vertical(z-axis), it is shown that radiant heat performance of all of heat sinks was superior than other experimental conditions. Especially, the heat resistance of top vented wave heat sink was $0.17^{\circ}C/W$(forced convection) and $0.48^{\circ}C/W$(natural convection). The radiant heat performance of heat sink was increased with increasing the height of fin and the width of fin pitch.

Heat Transfer from a Porous Heat Sink by Air Jet Impingement (충돌공기제트에서의 다공성 방열기의 열전달 특성)

  • 백진욱;김서영;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • Experiment were carried out to investigate the heat transfer characteristics of an aluminum foam block as a porous heat sink on a heat source by a vertical air jet impingement that can be applied for electronics cooling. The performance of the aluminum foam heat sink was evaluated by the convective heat transfer coefficient on the heat source. At a fixed porosity, pore density ($\beta$) of the foam and Reynolds number Re were varied in the range of $\beta$a=10, 20, 40 PPI(Pore Per Inch) and $850\leqRe\leq25000$. A nozzle diameter and the nozzle-to-plate spacing were also varied. It was found that the convective heat transfer was enhanced by the aluminum foam heat sink with lower pore density due to relatively intensified flow through the foam block. The aluminum foam block with much reduced weight shows slightly better performance with larger Nusselt number, compared with the convectional heat sink.

  • PDF

Velocity Field Measurement of Flow Inside SNOUT of Zinc Plating Process ( I ) (용융아연 도금공정에서의 SNOUT 내부 유동장 해석 ( I ))

  • Shin, Dae Sig;Choi, Jayho;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1265-1273
    • /
    • 1999
  • PIV(Particle Image Velocimetry) velocity field measurements inside the snout of a1/10 scale model of the Zn plating process were carried out at the strip speed $V_s=1.5m/s$. Aluminum powder particles ($1{\mu}m$) and atomized olive oil ($3{\mu}m$) were used as seeding particles to simulate the molten Zinc flow and deoxidization gas flow, respectively. A pulsed Nd:Yag laser and a $2K{\times}2K$ high-resolution CCD camera were synchronized for the PIV velocity field measurement. From flow visualization study, it is found that the liquid flow in the Zn pot is dominantly governed by the uprising flow caused by the rotating sink roll, with its effect on the steel strip inside the snout largely diminished by installing of the snout. The deoxidization gas flow in front of the strip inside the snout can be characterized by a large-scale vortex rotating clockwise direction formed by the moving strip. In the rear side of the strip, a counter-clockwise vortex is formed and some of the flow entrained by the moving strip impinges on the free surface of molten zinc. The liquid flow in front of the strip is governed by the flow entering the snout, caused by the spinning sink roll. Just below the free surface a counter-clockwise vortex is formed near the snout wall. The moving strip affects dominantly the flow behind the strip inside the snout, and large amount of the liquid flow follows the moving strip toward the sink roll. The thickness of the flow following the strip is very thin in the front side due to the uprising flow, however thick boundary layer is formed in the rear side of the strip. Its thickness is increased as moving downstream toward the sink roll. Inside the snout, the deoxidization gas flow above the free surface is much faster than the liquid flow in the zinc pot. Due to the larger influx of the flow following the moving strip in the rear side of the strip, higher percentage of imperfection can be anticipated on the rear surface of the strip.

Thermal Characteristics of the design on Residential 13.5W COB LED Down Light Heat Sink (주거용 13.5W COB LED 다운라이트 방열판 설계에 따른 열적 특성 분석)

  • Kwon, Jae-hyun;Lee, Jun-myung;Kim, Hyo-jun;Kang, Eun-young;Park, Keon-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.20-25
    • /
    • 2014
  • There are several severe problems for LED device, the next generation's economy green lighting: as the temperature increases, the lamp efficiency decreases; if the temperature is over $80^{\circ}C$, the lifetime of lighting decreases; Red Shift phenomenon that wavelength of spectrum line moves toward long wavelength occurs; and optical power decreases as $T_j$ increases. Thus, Heat sink design that can minimize the heat of LED device is currently in progress. While the thermal resistance of COB Type LED was reduced by direct coupling of LED chip to the board, residential 13.5W requires Heat sink in order resolve heat issue. This study designed Heat Sink suitable for residential 13.5W COB LED down-light and selected the optimum Fin thickness through flow simulation that packaged the designed Heat Sink and 13.5W COB. And finally it analyzed and evaluated the thermal modes using contacting thermometer.

Heat Transfer from a Fan-Aluminum Foam Heat Sink Assembly for CPU Cooling (CPU 냉각을 위한 홴-발포알루미늄 방열기 조합의 열전달 특성)

  • Kim, Seo-Yeong;Lee, Myeong-Ho;Baek, Jin-Uk;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.417-422
    • /
    • 2002
  • The experiments have been carried out to evaluate the cooling performance of a fan-aluminum foam heat sink assembly in comparison with a conventional CPU cooler. In terms of the dimensionless surface temperature of the heater, the cooling performance of the aluminum foam heat sink is similar to that of the conventional one with much reduced weight. The optimum fin height is found to be strongly dependent on the fin height of the heat sink and flow characteristics of the cooling fan.

A Study on Heat Transfer Performances of a Heat Pipe Heat Sink for Power Control Semiconductors (전력제어 반도체용 히트파이프 냉각기의 열전달 성능 연구)

  • 강환국;김재진;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.701-709
    • /
    • 2001
  • In this days, heat pipe heat sink has been widely applied to power controllers for railway substations to remove heat from power semiconductors(diodes or thyristors). The heat pipe heat sink consists of a aluminum heating block for mounting the thyristor, 2~3 heat pipes and large number of aluminum fins. The present study was to get fundamental informations of the structure, design parameters and heat transfer performances of heat pipe heat sink. Series of operational test for a unit with 3 heat pipes were performed and its heat flow circuit was analysed from the experimentally obtained data on wall temperature distribution. Total resistance was ranged 0.02~$0.03^{\circ}C$/W for a power range from 40W to400W. The time to get the steady state was approximately longer than 20 minutes, and overshooting was not occurred during start up operation.

  • PDF

Optimal Redundancy of the Consecutive k out of n Failure Lines Included or Excluded Sink-Source Parts. (연속 n중 k의 고장 연결 시스템에 있어서 최적 Redundancy 설계)

  • Bok-Man, Kim;Chung-Hwan, Oh
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.30
    • /
    • pp.209-214
    • /
    • 1994
  • A consecutive k out of n failure lines with sink-source parts is a system of components in sequence such that the system fails whether some k consecutive components are all fail. Some object, be it a flow, is to be relayed from a source to a sink through a sequence of intermediate stations(components). Now care should be taken as to if the source and the sink are also considered components of the systems, i. e. , whether they serve the same function as the intermediate components (stations). Such systems are different from ordinary consecutive k- out of n failure lines by adding the on source and sink pole[6]. The main properties of the reliability by the optimal redundancy of consecutive k out of n failure lines are presented under this modification.

  • PDF

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.

The Maximum Power Condition of the Endo-reversible Cycles (내적가역 사이클의 최대출력 조건)

  • 정평석;김수연;김중엽;류제욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.172-181
    • /
    • 1993
  • Pseudo-Brayton cycle is defined as an ideal Brayton cycle admitting the difference between heat capacities of working fluid during heating and cooling processes. The endo-pseudo-Brayton cycle which is a pseudo-Brayton cycle with heat transfer processes is analyzed with the consideration of maximum power conditions and the results were compared with those of the endo-Carnot cycle and endo-Brayton cycle. As results, the maximum power is an extremum with respect to the cycle temperature and the flow heat capacities of heating and cooling processes. At the maximum power condition, the heat capacity of the cold side is smaller than that of heat sink flow. And the heat capacity of endo-Brayton cycle is always between those of heat source and sink flows and those of the working fluids of pseudo-Brayton cycle. There is another optimization problem to decide the distribution of heat transfer capacity to the hot and cold side heat exchangers. The ratios of the capacies of the endo-Brayton and the endo-pseudo-Braton cycles at the maximum power condition are just unity. With the same heat source and sink flows and with the same total heat transfer caqpacities, the maximum power output of the Carnot cycle is the least as expected, but the differences among them were small if the heat transfer capacity is not so large. The thermal efficiencies of the endo-Brayton and endo-Carnot cycle were proved to be 1-.root.(T$_{7}$/T$_{1}$) but it is not applicable to the pseudo-Brayton case, instead it depends on comparative sizes of heat capacities of the heat source and sink flow.w.