• Title/Summary/Keyword: Single-step process

Search Result 374, Processing Time 0.025 seconds

Alkaliphilic Endoxylanase from Lignocellulolytic Microbial Consortium Metagenome for Biobleaching of Eucalyptus Pulp

  • Weerachavangkul, Chawannapak;Laothanachareon, Thanaporn;Boonyapakron, Katewadee;Wongwilaiwalin, Sarunyou;Nimchua, Thidarat;Eurwilaichitr, Lily;Pootanakit, Kusol;Igarashi, Yasuo;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1636-1643
    • /
    • 2012
  • Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-${\beta}$-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at $65-70^{\circ}C$ with an optimal pH at 9-10 and retaining >80% activity at pH 9, $60^{\circ}C$ for 1 h. Xyn3F showed a $V_{max}$ of 2,327 IU/mg and $K_m$ of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Two-Stage Evolutionary Algorithm for Path-Controllable Virtual Creatures (경로 제어가 가능한 가상생명체를 위한 2단계 진화 알고리즘)

  • Shim Yoon-Sik;Kim Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.682-691
    • /
    • 2005
  • We present a two-step evolution system that produces controllable virtual creatures in physically simulated 3D environment. Previous evolutionary methods for virtual creatures did not allow any user intervention during evolution process, because they generated a creature's shape, locomotion, and high-level behaviors such as target-following and obstacle avoidance simultaneously by one-time evolution process. In this work, we divide a single system into manageable two sub-systems, and this more likely allowsuser interaction. In the first stage, a body structure and low-level motor controllers of a creature for straight movement are generated by an evolutionary algorithm. Next, a high-level control to follow a given path is achieved by a neural network. The connection weights of the neural network are optimized by a genetic algorithm. The evolved controller could follow any given path fairly well. Moreover, users can choose or abort creatures according to their taste before the entire evolution process is finished. This paper also presents a new sinusoidal controller and a simplified hydrodynamics model for a capped-cylinder, which is the basic body primitive of a creature.

Solid-phase PEGylation for Site-Specific Modification of Recombinant Interferon ${\alpha}$-2a : Process Performance, Characterization, and In-vitro Bioactivity (재조합 인터페론 알파-2a의 부위 특이적 수식을 위한 고체상 PEGylation : 공정 성능, 특성화 및 생물학적 활성)

  • Lee, Byung-Kook;Kwon, Jin-Sook;Lee, E.K.
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • In 'solid-phase' PEGylation, the conjugation reaction occurs as the proteins are attached to a solid matrix, and thus it can have distinct advantages over the conventional, solution-phase process. We report a case study: rhIFN-${\alpha}$-2a was first adsorbed to cation exchange resin and then N-terminally PEGylated by aldehyde mPEG of 5, 10, and 20 kD through reductive alkylation. After the PEGylation, salt gradient elution efficiently recovered the mono-PEGylate in a purified form from the unwanted species such as unmodified IFN, unreacted PEG, and others. The mono-PEGylation and its purification were integrated in a single chromatographic step. Depending on the molecular weight of the mPEG aldehyde used, the mono-PEGylation yield ranged 50-64%. We could overcome the major problems of random, or uncontrollable, multi-PEGylation and the post-PEGylation purification difficulties associated with the solution-phase process. N-terminal sequencing and MALDI-TOF MS confirmed that a PEG molecule was conjugated only to the N-terminus. Compared with the unmodified IFN, the mono-PEGylate showed the reduced anti-viral activity as measured by the cell proliferation assay. The bioactivity was reduced more as the higher molecular weight PEG was conjugated. Immunoreactivity, evaluated indirectly by antibody binding activity using a surface plasmon resonance biosensor, also decreased. Nevertheless, trypsin resistance as well as thermal stability was considerably improved.

Enhanced Weighted Directional Demosaicking using Edge Indicator (에지 지시자를 이용한 향상된 방향 가중치 디모자이킹 알고리듬)

  • Ryu, Ji-Man;Yang, Si-Young;Lim, Tae-Hwan;Jung, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.265-279
    • /
    • 2010
  • A color image requires at least three color channels to obtain the full color image. However the image sensor obtains only the intensity of the brightness, that is, three image sensors are required for every pixel to capture the full color image. Since the image sensor is quiet expensive, most of digital still cameras adopt single image sensor array with color filter array (CFA) to reduce the size and the cost. Since the image obtained using single sensor array has only one color component per pixel, we need to reconstruct the missing two color components to obtain the full color image. We call this process as color filter interpolation or demosaicking. In this paper, demosaicking algorithm composed of two large step is proposed. Proposed algorithm is combined with several different algorithms such as Edge-directed demosaicking, Second-order gradients as correction terms, Smooth hue transition Interpolation, etc. The simulation results show that the proposed algorithm performs much better than the state-of-the-art demosaicking algorithms in terms of both subjective and objective qualities.

A Fast Algorithm of the Belief Propagation Stereo Method (신뢰전파 스테레오 기법의 고속 알고리즘)

  • Choi, Young-Seok;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • The belief propagation method that has been studied recently yields good performance in disparity extraction. The method in which a target function is modeled as an energy function based on Markov random field(MRF), solves the stereo matching problem by finding the disparity to minimize the energy function. MRF models provide robust and unified framework for vision problem such as stereo and image restoration. the belief propagation method produces quite correct results, but it has difficulty in real time implementation because of higher computational complexity than other stereo methods. To relieve this problem, in this paper, we propose a fast algorithm of the belief propagation method. Energy function consists of a data term and a smoothness tern. The data term usually corresponds to the difference in brightness between correspondences, and smoothness term indicates the continuity of adjacent pixels. Smoothness information is created from messages, which are assigned using four different message arrays for the pixel positions adjacent in four directions. The processing time for four message arrays dominates 80 percent of the whole program execution time. In the proposed method, we propose an algorithm that dramatically reduces the processing time require in message calculation, since the message.; are not produced in four arrays but in a single array. Tn the last step of disparity extraction process, the messages are called in the single integrated array and this algorithm requires 1/4 computational complexity of the conventional method. Our method is evaluated by comparing the disparity error rates of our method and the conventional method. Experimental results show that the proposed method remarkably reduces the execution time while it rarely increases disparity error.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Microbial Conversion of Organic Wastes for Production of Biogas and Algal Biomass (바이오가스와 균체단백질 생산을 위한 유기질 폐기물의 미생물 전환 연구)

  • 권순찬;김진상
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.438-445
    • /
    • 1993
  • Raw cow manure was treated by a 4-step integrated system with phase separation anaerobic digestion and algal culture. When the first methane fermentation was performed by the effluent from the acid fermenter with retention time of 4 days, the elrerage blogas production rate was 977m1/1 culture/day Gas productivity compared to conventional single-stage anaerobic digestion increased up to 31.4%. As the 2nd methane fermenter was fed by the effluent from the first methane fermenter with 4 days of retention time, average amount of 428m1/1 culture/day of biogas was produced. The reduction rate of COD in the effluent from the acid fermenter, the 1st and the 2nd methane fermenter were 71.8%, 42.6% and 24.0% respectively. Finally, we examined algal treatment process for the effluent from the 2nd methane fermenter. A semi-continuous culture of Chlorella sp. PSH3 was conducted by feeding the effluent with retention time of 10days. In this process, the production rate of algal biomass and COD reduction rate were averaged 1.8g/1 culture/day(2.8$\times$106 cells/ml) and 73%, respectively. Through the 4-setp treatments, the total chemical oxygen demand was reduced from 51,300ppm to 85ppm. Therefore, the reduction rate of total chemical oxygen demand reached about 99.8%. The results indicate that the integrated system could be applicable for treatment of organic wastes, concurrently producing biogas and algal biomass.

  • PDF

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Dynamic Optimization of a Reactive Distillation Column Producing Methyl Acetate (메틸 아세테이트 생산을 위한 반응증류 공정의 동적 최적화)

  • Kim, Jiyong;Kim, Junghwan;Moon, Il
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.739-746
    • /
    • 2008
  • The aim of this study is finding the optimal design parameters and the optimal operation variables of a reactive distillation column. Different from steady state optimization, dynamic optimization makes it possible considering operation ability as well as design problems at process design step. For performing dynamic optimization, dynamic simulation should be done first. If dynamic simulation is already finished, dynamic optimization can be performed with less effort than that of dynamic simulation.Reactive distillation systems involving reaction and separation in a single unit have the potential to reduce capital and operating costs, particularly when reaction have conversion constraint or when azeotropes exist making conventional separation difficult and expensive. This study here present work on the continuous distillation process, the homogeneous catalyzed esterification of methanol and acetic acid, the synthesis of methyl acetate. Based on an equilibrium stage model of a reactive distillation column a dynamic optimization problem was formulated and solved. And the results were verified by performing dynamic simulation and showing the variation of conversion and purity as the variation of the operation variables. As the results of dynamic optimization, this study found optimal feed ratio, reflux ratio and reboiler duty of this system. And as this study applied it to dynamic simulations the dynamic characteristics of a reactive distillation column are showed under optimal operating condition.