Dynamic Optimization of a Reactive Distillation Column Producing Methyl Acetate

메틸 아세테이트 생산을 위한 반응증류 공정의 동적 최적화

  • Kim, Jiyong (Deportment of Chemical and Bimolecular Engineering, Yonsei University) ;
  • Kim, Junghwan (Deportment of Chemical and Bimolecular Engineering, Yonsei University) ;
  • Moon, Il (Deportment of Chemical and Bimolecular Engineering, Yonsei University)
  • 김지용 (연세대학교 화공생명공학과) ;
  • 김정환 (연세대학교 화공생명공학과) ;
  • 문일 (연세대학교 화공생명공학과)
  • Received : 2008.04.30
  • Accepted : 2008.05.12
  • Published : 2008.08.31

Abstract

The aim of this study is finding the optimal design parameters and the optimal operation variables of a reactive distillation column. Different from steady state optimization, dynamic optimization makes it possible considering operation ability as well as design problems at process design step. For performing dynamic optimization, dynamic simulation should be done first. If dynamic simulation is already finished, dynamic optimization can be performed with less effort than that of dynamic simulation.Reactive distillation systems involving reaction and separation in a single unit have the potential to reduce capital and operating costs, particularly when reaction have conversion constraint or when azeotropes exist making conventional separation difficult and expensive. This study here present work on the continuous distillation process, the homogeneous catalyzed esterification of methanol and acetic acid, the synthesis of methyl acetate. Based on an equilibrium stage model of a reactive distillation column a dynamic optimization problem was formulated and solved. And the results were verified by performing dynamic simulation and showing the variation of conversion and purity as the variation of the operation variables. As the results of dynamic optimization, this study found optimal feed ratio, reflux ratio and reboiler duty of this system. And as this study applied it to dynamic simulations the dynamic characteristics of a reactive distillation column are showed under optimal operating condition.

반응증류 공정은 전형적인 반응공정과 증류공정을 통합하여 증류탑에서 반응과 동시에 분리를 수행하는 공정이다. 반응증류 공정의 가장 큰 장점은 반응 전환율의 제약과 공비점으로 인한 제약을 효율적으로 극복할 수 있다는 데 있다. 본 연구에서는 에스테르화반응으로 얻어지는 대표적인 물질인 메틸 아세테이트를 합성, 생산하는 연속 반응증류 공정의 상세한 수학적 모델을 구성하여 동적 모사 및 동적 최적화를 수행하였다. 상평형을 가정한 평형단 모델에 반응속도 식을 적용하여 분리와 반응이 함께 일어나는 증류탑과 재비기 및 응축기를 수학적 모델로 구성하여 동적모사를 수행하여 실제 공정이 운전되는 시나리오대로 공정전체를 모사함으로써 공정 개시부터의 공정의 동적 특성을 살펴보았다. 이 동적 모델과 연계되어, 반응증류 공정으로 얻어지는 메틸 아세테이트의 순도를 목적함수로 하는 최적화 문제를 구성하여 그 결과로 최적의 원료주입 분율 및 재비기의 열량 및 환류비 등을 구할 수 있었다. 또한 여기서 얻어진 운전 변수의 값을 변화시킬 때 반응 전환율의 변화를 살펴봄으로써, 최적화 문제의 해로 구해진 운전 변수의 값의 타당성을 증명하였다.

Keywords

References

  1. Moon, I. and Lee, I., "Systematic Methods of Chemical Process Design(transtlated in Korean)," A-Jin(1998)
  2. Tuchlenski, A., Beckmann, A., Reusch, D., Düssel, R., Weidlich, U. and Janowsky, R., "Reactive Distillation Industrial Applications, Process Design & Scale-up," Chem. Eng. Sci., 56(2), 387-394(2001) https://doi.org/10.1016/S0009-2509(00)00240-2
  3. Taylor, R. and Krishna, R., "Modelling Reactive Distillation," Chem. Eng. Sci., 55(22), 5183-5229(2000) https://doi.org/10.1016/S0009-2509(00)00120-2
  4. Malone, M. F. and Doherty, M. F., "Conceptual Design of Distillation Systems," McGrawHill(2001)
  5. Malone, M. F., "Reactive Distillation: Commentaries," Ind. Eng. Chem. Res., 39, 3953-3957(2000) https://doi.org/10.1021/ie000633m
  6. gPROMS Introductory User's Guide, PSE Ltd. (2002)
  7. gPROMS Advanced User's Guide, PSE Ltd. (2002)
  8. Melles, S., Grievink, J. and Schrans, S. M., "Optimisation of the Conceptual Design of Reactive Distillation Columns," Chem. Eng. Sci., 55(11), 2089-2097(2001)
  9. Fernholz, G., Engell, S., Kreul, L.-U. and Gorak, A., "Optimal Operation of a Semi-batch Reactive Distillation Column," Computers & Chemical Engineering, 24(2-7), 1569-1575(2000) https://doi.org/10.1016/S0098-1354(00)00553-6
  10. Cervantes, A. and Biegler, L. T., "Large-Scale DAE Optimization Using a Simultaneous NLP Formulation," AIChE Journal, 44(5), 1038-1050(1998) https://doi.org/10.1002/aic.690440505
  11. Pekkanen, M., "A Local Optimization Method for the Design of Reactive Distillation," Comput. Chem. Eng., 19, 235-240(1995) https://doi.org/10.1016/0098-1354(95)87042-3
  12. Ismail, S. R., Proios, P. and Pistikopoulos, E. N., "Modular Synthesis Framework for Combined Separation/Reaction Systems," AIChE Journal, 47(3), 629-649(2001) https://doi.org/10.1002/aic.690470312
  13. Barbosa, D. and Doherty, M. F., "Design and Minimum-reflux Calculations for Double-feed Multicomponent Reactive Distillation Columns," Chem. Eng. Sci., 43(9), 2377-2389(1988) https://doi.org/10.1016/0009-2509(88)85172-8
  14. Lee, J. W., Hauan, S. and Westerberg, A. W., "Graphical Methods for Reaction Distribution in a Reactive Distillation Column," AIChE Journal, 46(6), 1218-1233(2000) https://doi.org/10.1002/aic.690460614
  15. Lee, J. W., Steinar, Hauan., Kristian, M. Lien. and Westerberg, A. W., "Difference Points in Extractive and Reactive Cascades. II Generating Design Alternatives by the Lever Rule for Reactive Systems," Chem. Eng. Sci., 55(16), 3161-3174(2000) https://doi.org/10.1016/S0009-2509(99)00590-4
  16. Lee, J. W. and Westerberg, A. W., "Graphical Design Applied to MTBE and Methyl Acetate Reactive Distillation Processes," AIChE Journal, 47(6), 1333-1345(2000) https://doi.org/10.1002/aic.690470611
  17. Malone, M. F. and Doherty, M. F., "Residue Curve Maps for Reactive Distillation Systems with Liquid-phase Splitting," Chem. Eng. Sci., 57(1), 163-178(2002) https://doi.org/10.1016/S0009-2509(01)00353-0
  18. Suwalla, "Design Guidelines for Solid-Catalyzed Reactive Distillation Systems," Ind. Eng. Chem. Res., 39, 3953-3957(2000) https://doi.org/10.1021/ie000633m
  19. Agreda, V. H., Partin, L. R. and Heise, W. H., "High-purity Methyl Acetate via Reactive Distillation," Chem. Eng. Prog., 86(2), 40-46(1990)
  20. Georgiadis, M. C., Schenk, M., Pistikopoulos, E. N. and Gani, R., "The Interactions of Design Control and Operability in Reactive Distillation Systems," Comput. Chem. Eng., 26(4-5), 735-746(2002) https://doi.org/10.1016/S0098-1354(01)00774-8