• Title/Summary/Keyword: Single-phase motor

Search Result 477, Processing Time 0.024 seconds

A Study on a Control Method for Small BLDC Motor Sensorless Drive with the Single Phase BEMF and the Neutral Point (소형 BLDC 전동기 센서리스 드라이브의 단상 역기전력과 중성점을 이용한 제어기법 연구)

  • Jo, June-Woo;Hwang, Don-Ha;Hwang, Young-Gi;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.1-7
    • /
    • 2014
  • Brushless Direct Current(BLDC) Motor is essential to measure a rotor position because of that this motor type needs to synchronize the rotor's position and changeover phase current instead of a brush and commutator used on the existing dc motor. Recently, many researches have studied on sensorless control drive for BLDC motor. The conventional control methods are a compensation value dq, Kalman filter, Fuzzy logic, Neurons neural network, and the like. These methods has difficulties of detecting BEMF accurately at low speed because of low BEMF voltage and switching noise. And also, the operation is long and complex. So, it is required a high-performance microprocessor. Therefore, it is not suitable for a small BLDC motor sensorless drive. This paper presents control methods suitable for economic small BLDC motor sensorless drive which are an improved design of the BEMF detection circuit, simplifying a complex algorithm and computation time reduction. The improved motor sensorless drive is verified stability and validity through being designed, manufactured and analyzed.

Speed Control for Single Phase Induction Motor Using Phase Angle (위상각제어에 의한 단상유도전동기의 속도제어)

  • 임영철;김광헌;최찬학;나석환;정영국;장영학;장학충
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.41-50
    • /
    • 1995
  • Single-phase induction motors are widely used in many light duty applications, especially in home and office. many applications which use these motors require adjustable speed control continuously. In general, the speed control of single-phase induction motor is accomplished at a few discrete speeds by using tapped-windings, pole switching or gear. These techniques are inefficient and complicated. In this paper, Torque controller which adjusts a generating torque using phase difference between main winding voltage and auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage is proposed. The analysis includes the determination of the relationship between the auxiliary winding voltage phase angle and torque. Simulation results of the torque-speed characteristics using the controlled auxiliary winding supply are shown and discussed. and the drive is tested experimentally to verify the results of the theory by using a dynamometer.

  • PDF

The Starting Characteristics of Single-Phase Induction Motor Using Sequence Controller (순서접속제어에 의한 단상유도전동기의 기동특성)

  • 박수강;성경민;조금배;오금곤;백형래;박해암
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.76-79
    • /
    • 1996
  • The most common for starting a single phase induction motor is to install a starting condenser and a centrifugal switch in series with the auxiliary winding. Though this method is simple, life of single phase induction motor is short because of malfunction of a starting condenser and a centrifugal switch and efficiency improvement has limitation. In this paper, the starting characteristics of SPIM is improved by sequence voltage control strategy of auxiliary winding in removing a starting condenser and a centrifugal switch. Finally, the excellent starting performance of SPIM is shown through simulation and experimental results.

  • PDF

Analysis and Design of the Single-phase Line Start Permanent Magnet Motor Considering Overhang Effect (오버행 효과를 고려한 단상 유도동기전동기의 특성해석 및 설계)

  • Kang, Han-Byul;Kim, Byung-Taek;Baek, Soo-Whang;Kim, Hong-Seok;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.49-56
    • /
    • 2009
  • This paper shows the characteristic analysis of single-phase line start permanent magnet (LSPM) motors considering the overhang structure. To achieve the low-cost design of an LSPM motor, the overhang structure is adapted for the rotor with a constraint of a fixed magnet volume. To obtain the dynamic and steady performance of the motor, the circuit parameters are extracted using the 3D-static FEM(Finite Element Method) and the d-q equivalent circuit is used. The performance of the model with overhang is compared with the conventional model without overhang on the condition that both models have a fixed volume for the permanent magnet.

Design Methodology for Minimal Stator Copper Loss in A Single-phase Induction Motor (단상 유도전동기의 고정자 동손 최소화를 위한 설계 방법)

  • Baek, Soo-Whang;Kim, Byung-Taek;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1536-1545
    • /
    • 2008
  • In this paper, we research a new method for efficiency improvement of a single-phase Induction motor by minimization of the stator loss. To make this, we perform winding design which is based on balanced and quasi-balanced operation condition. It gives efficiency improvement greatly but poor starting torque simultaneously. To obtain the best efficiency improvement maintaining the maximum and starting torque, the optimal winding specification and rotor dimension is determined with variation of secondary resistance, running capacitor and turn ratio. Finally, this paper gives the comparison between the simulation results and experimental results.

Analysis of Core Losses in Capacitor-Run Single Phase Induction Motor Using the Finite Element Methods (유한요소법을 이용한 캐패시터 운전형 단상 유도전동기의 철손해석)

  • Min, Byoung-Wook;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.342-344
    • /
    • 1999
  • This paper presents the analysis of core losses in capacitor-run single phase induction motors using the finite element methods. The double revolving field theory can be used for the analysis to assess the quantitative and qualitative performance of the single-phase induction motor. But it is difficult to evaluate accurately the core losses. It is more difficult to segregate stator and rotor core losses at no-load and load conditions. Numerical analysis such as FEM can be used effectively for the accurate calculation of core losses and motors performances. In this paper, the coupling method of core loss characteristic equation and FEM are proposed for the accurate calculation of core losses in the stator and rotor. The FFT is also used to calculate fundamental and harmonic components in the yoke and teeth parts of motor.

  • PDF

Analysis of the Characteristics of Single-Phase Induction motors and Improved Effiency Design (단상유도전동기의 특성해석 및 효율향상 설계)

  • Ryu, Ho-Gil;Nam, Hyuk;Jeong, Seung-Kyu;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.870-872
    • /
    • 2003
  • This paper deals with the characteristic analysis of capacitor-run single phase induction motor by equivalent circuit. The unbalanced elliptic rotating magnetic field of the motor was analysed by the symmetrical coordinate method. And this paper check the reliability of characteristic analysis by equivalent circuit in comparison with experimental results and analyse the characteristics of single phase induction motors by changing circuit parameters. Finally, this paper shows the improved effiency design motor by using that result.

  • PDF

Design optimization of Single-Phase induction motor Using Response Surface Method (반응표면법을 이용한 단상유도모터의 최적설계)

  • Shim, Ho-Kyoung;Kang, Je-Nam;Kim, Chwa-Il;Wang, Se-Myung;Kim, Jong-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.681-683
    • /
    • 2003
  • The response surface method (RSM) became a popular meta modeling technique, but it always contains the approximation error. Instead of the conventional RSM, the moving least squares method (MLSM) was used to get more accurate models. The characteristics of a single-phase induction motor for the reciprocal compressor are analyzed by using the lumped method Program (LMP). The proposed method is applied to a single-phase induction motor for increasing the efficiency.

  • PDF

Analysis Method Using Equivalent Circuit Considering Harmonic Components of the Pole Change Motor

  • Nam Hyuk;Jung Tae-Uk;Kim Young-Kyoun;Jung Seung-Kyu;Hong Jung-Pyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.162-167
    • /
    • 2005
  • This paper deals with the method of characteristic analysis of the capacitor-run single- phase induction motor having two poles (4-pole and 2-pole). This motor, which is referred to as a pole change motor in this paper, is capable of variable speed operation without inverters or drives. However, speed-torque curve can be distorted by the harmonic components contained in the magnetic flux density distribution. Therefore, the characteristics of this motor are analyzed using equivalent circuit considering harmonic components and the simulation results are compared with the experimental results.

Fabrication of the Windmill Type Ultrasonic Its Characteristics of Torque and Bidirectional Revolution (풍차형 초음파 전동기의 제작과 토크 및 정$\cdot$역회전특성)

  • Kim, Young-Gyun;Kim, Jin-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.105-109
    • /
    • 2001
  • In this paper, the windmill type ultrasonic motors with 11.35 mm diameter, 2.87 mm thickness of metal endcap and 1.47 g weight were fabricated. Effects of slots and thickness on torque characteristic in the windmill type ultrasonic motor were investigated, when stator's slots were changed from 4, 6, 8 and thickness 0.15 mm, respectively. Specially designed metal endcaps with windmill shaped cutting can provide longitudinal and torsional displacements simultaneously as the ceramic disk vibrates radically. The windmill type ultrasonic motor has only three components: a stator element with windmill shape slotted metal endcap, a rotor and bearing. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The ultrasonic motor fabricated here was the windmill type ultrasonic motor operated by single-phase AC source. Bidirectional revolution using single-phase high frequency for driving the ultrasonic motor was presented.

  • PDF