• Title/Summary/Keyword: Single-phase current control

Search Result 477, Processing Time 0.041 seconds

A Control Algorithm of Single Phase Active Power Filter based on Rotating Reference Frame (회전좌표계를 이용한 단상능동전력필터의 제어이론)

  • Kim, Jin-Sun;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1480-1482
    • /
    • 2005
  • The major causes of power quality deterioration are harmonic current through semiconductor switching device, due to use of nonlinear loads such as diodes rectifier or thyristor rectifiers. In response to this concerns, this paper presents a new control method of single-phase active power filter(APF) for the compensation of harmonic current components in nonlinear loads. In order to make the complex calculation to be possible, the single-phase system that has two phases was made by constructing a imaginary second-phase giving time delay to load currents. In the conventional method, a imaginary-phase lagged to the load current T/4(here T is the fundamental cycle) was made. But in this proposed method, the new signal, which has the delayed phase through the filter, using the phase-delay property of low-pass filter, was used as the second phase. As this control method is applied to the system of single phase, an instantaneous calculation was done rather by using the rotating reference frames that synchronizes with source-frequency than by applying instantaneous reactive power theory that uses the conventional fixed reference frames.

  • PDF

Sinusoidal Current Control of Single-Phase PWM Converters under Voltage Source Distortion Using Composite Observer (왜곡된 전원 전압하에서 Composite 관측기를 이용한단상 PWM 컨버터의 정현파 전류 제어)

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.466-476
    • /
    • 2011
  • In this paper, a high-performance current control for the single-phase PWM converter under distorted source voltages is proposed using a composite observer. By applying the composite observer, the fundamental and high-order harmonic components of the source voltage and current are extracted without a delay. The extracted fundamental component is used for a phase-lock loop (PLL) system to detect the phase angle of the source voltage. A multi-PR (proportional-resonant) controller is employed to regulate the single-phase line current. The high-order harmonic components of the line current are easily eliminated, resulting in the sinusoidal line current. The simulation and experimental results have verified the validity of the proposed method.

A Study of Single Phase Hysteresis Current Control Using Reference Current Slope for Reducing Switching Loss (스위칭 손실 저감을 위한 기준전류 기울기를 이용한 단상 히스테리시스 전류 제어에 관한 연구)

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.150-155
    • /
    • 2009
  • Hysteresis current regulator has been used widely because of its simple principle and structure. However, when the current band width is too narrow or the applied voltage is relatively too high, the switching frequency increases abruptly and it makes large amount of heat. In this study, for single phase current control, the hysteresis current control is executed by adding 0 mode state and comparing the slope of the current reference, which decreases the switching frequency so much and make the current control much stable. These were proved with computer simulations.

The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation (단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;Lee, Young-Gwon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

A Performance Comparison of the Current Feedback Schemes with a New Single Current Sensor Technique for Single-Phase Full-Bridge Inverters

  • Choe, Jung-Muk;Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.621-630
    • /
    • 2016
  • In this paper, a single current sensor technique (SCST) is proposed for single-phase full-bridge inverters. The proposed SCST measures the currents of multiple branches at the same time, and reconstructs the average inductor, capacitor, and load current in a single switching cycle. Since all of the branches' current in the LC filter and the load are obtained using the SCST, both the inductor and the capacitor current feedback schemes can be selectively applied while taking advantages of each other. This paper also analyzes both of the current feedback schemes from the view point of the closed-loop output impedance. The proposed SCST and the analysis in this paper are verified through experiments on a 3kVA single-phase uninterruptible power supply (UPS).

High-Performance Voltage Controller Design Based on Capacitor Current Control Model for Stand-alone Inverters

  • Byen, Byeng-Joo;Choe, Jung-Muk;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1635-1645
    • /
    • 2015
  • This study proposes high-performance voltage controller design that employs a capacitor current control model for single-phase stand-alone inverters. The single-phase stand-alone inverter is analyzed via modeling, which is then used to design the controller. A design methodology is proposed to maximize the bandwidth of the feedback controller. Subsequently, to compensate for the problems caused by the bandwidth limitations of the controller, an error transfer function that includes the feedback controller is derived, and the stability of the repetitive control scheme is evaluated using the error transfer function. The digital repetitive controller is then implemented. The simulation and experimental results show that the performance of the proposed controller is high in a 1.5 kW single-phase stand-alone inverter prototype.

Phase Current Reconstruction Techniques for Two-Phase Inverters using a Single Current Sensor

  • Cho, Young-Hoon;Cho, Kwan-Yuhl;Mok, Hyung-Soo;Kim, Kyeong-Hwa;Lai, Jih-Shen
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.837-845
    • /
    • 2011
  • This paper proposes phase current reconstruction techniques for two-phase two-leg and two-phase four-leg inverters using a single current sensor. In the proposed methods, one phase current is sampled simultaneously with a particular branch current by using only one current sensor, and then current reconstruction algorithms are applied to extract the information on two phase currents from the sensor output. The sampled current information is periodically updated at the peak and the valley of the triangular carrier waveform in each switching cycle of pulse-width modulation (PWM). The voltage vector spaces where the phase currents can be reconstructed are evaluated. Compared to the existing method using two individual current sensors in two phases, the proposed schemes can save implementation cost since it is possible to remove one current sensor. In addition, the proposed methods are free from gain discrepancy issues between two current sensors. Simulations and experiments show excellent current reconstruction performance of the proposed methods.

A Novel Parameter-independent Fictive-axis Approach for the Voltage Oriented Control of Single-phase Inverters

  • Ramirez, Fernando Arturo;Arjona, Marco A.;Hernandez, Concepcion
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.533-541
    • /
    • 2017
  • This paper presents a novel Parameter-Independent Fictive-Axis (PIFA) approach for the Voltage-Oriented Control (VOC) algorithm used in grid-tied single-phase inverters. VOC is based on the transformation of the single-phase grid current into the synchronous reference frame. As a result, an orthogonal current signal is needed. Traditionally, this signal has been obtained from fixed time delays, digital filters or a Hilbert transformation. Nevertheless, these solutions present stability and transient drawbacks. Recently, the Fictive Axis Emulation (FAE) VOC has emerged as an alternative for the generation of the quadrature current signal. FAE requires detailed information of the grid current filter along with its transfer function for signal creation. When the transfer function is not accurate, the direct and quadrature current components present steady-state oscillations as the fictive two-phase system becomes unbalanced. Moreover, the digital implementation of the transfer function imposes an additional computing burden on the VOC. The PIFA VOC presented in this paper, takes advantage of the reference current to create the required orthogonal current, which effectively eliminates the need for the filter transfer function. Moreover, the fictive signal amplitude and phase do not change with a frequency drift, which results in an increased reliability. This yields a fast, linear and stable system that can be installed without fine tuning. To demonstrate the good performance of the PIFA VOC, simulation and experimental results are presented.

Simulink-based Modelling and Simulation for a Single-phase UPFC (Simulink를 이용한 단상 UPFC 모델링 및 시뮬레이션)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.523-530
    • /
    • 2009
  • This paper presents a study on a small scale single-phase UPFC preliminary researches on power quality compensating schemes of electrical railway. As the UPFC is very complicated power-electronic system consisting of grid-connected transformers, four single phase inverters interconnected with dc-link capacitors and various electrical apparatuses, multiple controllers and control algorithms are needed, and entire UPFC has been modelled in the form of block diagrams and simulated by using Simulink. The main purpose of the compensating system is to manage reactive and active powers with the four single phase inverters, so, the control effort has been focused on the power flow control and has been realized through the hysteresis current control of the single phase inverters. And transport-delayed PLL with additional delay-time compensating term has been used to synchronize a grid voltage and the simulation results have shown that the compensating term could improve PLL performance under some frequency variation of the voltage.

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF