• Title/Summary/Keyword: Single-phase current control

Search Result 477, Processing Time 0.033 seconds

Modeling of utility interactive photovoltaic system DC-DC converter (태양광 발전 시스템용 DC-DC 컨버터의 모델링)

  • Mun, S.P.;Park, Y.J.;Kim, Y.M.;Kang, W.J.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.215-217
    • /
    • 2002
  • In this paper, a new converter for utility interactive photovoltaic system is proposed, the conventional utility interactive photovoltaic system is composed of a PWM inverter and a DC converter. However, the increased switching loss and the high frequency switching noise become a problem. the control accuracy of the system is made to lower by the dead time of the switching devices. and it becomes a cause of the lower conversion efficiency. In order to resolve those problems, we applied a non- dissipative snubber circuit to a converter, which generates the single phase absolute value of sinusoidal current. the converter consists of two switching devices and one capacitor which constitute a non-dissipative snubber circuit. the proposed circuit is very useful to minimize and increase efficiency, when it is used to an utility interactive photovoltaic system. it is confirmed by simulation that the proposed converter for new photovoltaic system has stable operation and good output.

  • PDF

A Study on starting Characteristics Improvement of Sensorless BLDC Motor (센서리스 구동 브러시리스 DC 모터의 기동 특성 개선에 관한 연구)

  • Hong, Sun-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.54-59
    • /
    • 2005
  • Brushless DC motor is a motor which is modified form DC brush motor and it does not have brushes. BLDCM is easy to centre, has wide speed range, high efficiency. However it needs speed sensor like encoder which increases the motor price and cause some faults in poor surroundings.. In this paper, for the sensorless control, the driving techniques for the initial stable start and the steady state are studied For the steady state the rotor position is determined using the measured back-EMF. To enhance the initial stating performance, the current signal from the free-wheeling diode is used. The results are conformed through the experiments.

A New Random SPWM Technique for AC-AC Converter-Based WECS

  • Singh, Navdeep;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.939-950
    • /
    • 2015
  • A single-stage AC-AC converter has been designed for a wind energy conversion system (WECS) that eliminates multistage operation and DC-link filter elements, thus resolving size, weight, and reliability issues. A simple switching strategy is used to control the switches that changes the variable-frequency AC output of an electrical generator to a constant-frequency supply to feed into a distributed electrical load/grid. In addition, a modified random sinusoidal pulse width modulation (RSPWM) technique has been developed for the designed converter to make the overall system more efficient by increasing generating power capacity and reducing the effects of inter-harmonics and sub-harmonics generated in the WECS. The technique uses carrier and reference waves of variable switching frequency to calculate the firing angles of the switches of the converter so that the three-phase output voltage of the converter is very close to a sine wave with reduced THD. A comparison of the performance of the proposed RSPWM technique with the conventional SPWM demonstrated that the power generated by a turbine in the proposed approximately increased by 5% to 10% and THD reduces by 40% both in voltage and current with respect to conventional SPWM.

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.

A harmonic reduction scheme for 12-pulse diode rectifiers by auxiliary voltage supply (보조전원장치에 의한 12-펄스정류기의 고조파 저감)

  • Kim, Sung-Hwan;Kim, Jong-Su;Oh, Sae-Gin;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.916-922
    • /
    • 2014
  • Diode rectifiers have been widely used for an AC to DC converter. But a big problem is that they include large harmonics components in the input currents. A 12-pulse configuration with phase shifting transformer is useful for reducing them. however, it still includes the ($12{\pm}1$)th (m; integer) harmonics in the input currents. In this paper, we propose a single-phase square wave auxiliary voltage supply which is inserted in the middle DC bus. It reduces harmonics especially the 11th and 13th and the harmonic characteristic becomes almost equivalent to a 24-pulse rectifier. Theoretical analysis of the combined 12-pulse diode rectifier with the auxiliary supply is presented and a control method of the auxiliary supply is proposed. The reduction in the input current harmonics is verified by simulation using software PSIM.

The Characteristics Analysis and Design of High-Frequency Isolated Type ZVZCS PS-PWM DC-DC Converter with Fuel Cell Generation System (연료전지 발전시스템에 적용된 고주파 절연형 ZVZCS PS-PWM DC-DC 컨버터의 설계 및 특성 해석)

  • Suh, Ki-Young;Mun, Sang-Pil;Kim, Dong-Hun;Lee, Hyun-Woo;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • In this paper, the proposed full-bridge high frequency isolated zoo voltage and zero current switching phase shifted pulse width modulation(ZVZCS PS-PWM)DC-DC converter among fuel cell generation system consist of 1.2[kW] fuel cell of Nexa Power Module, full-bridge DC-DC converter to boost the fuel cell low voltage($28{\sim}43[%]$) to 380[VDC] and a single phase full-bridge inverter is implemented to produce AC output(220[VAC], 60[Hz]). A tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed full-bridge high frequency isolated ZVZCS PS-PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of $93{\sim}97[%]$ is obtained over the wide output voltage regulation ranges and load variations.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

Estimation of Reproduction Number for COVID-19 in Korea (국내 코로나바이러스감염증-19의 감염재생산수 추정)

  • Jeong, Jaewoong;Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.493-510
    • /
    • 2020
  • Purpose: As of July 31, there were 14,336 confirmed cases of COVID-19 in South Korea, including 301 deaths. Since the daily confirmed number of cases hit 909 on February 29, the spread of the disease had gradually decreased due to the active implementation of preventive control interventions, and the daily confirmed number had finally recorded a single digit on April 19. Since May, however, the disease has re-emerged and retaining after June. In order to eradicate the disease, it is necessary to suggest suitable forward preventive strategies by predicting future infectivity of the disease based on the cases so far. Therefore, in this study, we aim to evaluate the transmission potential of the disease in early phases by estimating basic reproduction number and assess the preventive control measures through effective reproduction number. Methods: We used publicly available cases and deaths data regarding COVID-19 in South Korea as of July 31. Using ensemble model integrated stochastic linear birth model and deterministic linear growth model, the basic reproduction number and the effective reproduction number were estimated. Results: Estimated basic reproduction number is 3.1 (95% CI: 3.0-3.2). Effective reproduction number was the highest with 7 on February 15, decreased as of April 20. Since then, the value is gradually increased to more than unity. Conclusion: Preventive policy such as wearing a mask and physical distancing campaigns in the early phase of the outbreak was fairly implemented. However, the infection potential increased due to weakening government policy on May 6. Our results suggest that it seems necessary to implement a stronger policy than the current level.

Radio-Sensitization by Piper longumine of Human Breast Adenoma MDA-MB-231 Cells in Vitro

  • Yao, Jian-Xin;Yao, Zhi-Feng;Li, Zhan-Feng;Liu, Yong-Biao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3211-3217
    • /
    • 2014
  • Background: The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Materials and Methods: Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose ($D_0$), quasi-threshold dose ($D_q$) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM). Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. Results: The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Conclusions: Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA-MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.