• Title/Summary/Keyword: Single-crystal nanowires

Search Result 29, Processing Time 0.032 seconds

Fabrication of Single Crystal Poly (3,4-ethylenedioxythiophene) Nanowire Arrays by Vapor Phase Polymerization with Liquid-bridge-mediated Nanotransfer Molding

  • Lee, Gi-Seok;Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.372-372
    • /
    • 2012
  • We have studied a fabrication of Poly (3,4-ethylenedioxythiophene) (PEDOT) wire arrays and structures with various feature sizes from hundreds micrometers to tens nanometers. PEDOT is well-known as a conducting material, can be grown by a vapor pressure polymerization (VPP) method. The VPP technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Nanotransfer Printing for Large-Scale Integrated Nanopatterns of Various Single-Crystal Organic Materials

  • Baek, Jang-Mi;Park, Gyeong-Seon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.361.2-361.2
    • /
    • 2016
  • The manufacture of organic electronic circuits requires effective heterogeneous integration of different nanoscale organic materials with uniform morphology and crystallinity in a desired arrangement on a substrate. Herein, we present a new direct printing method, which enables monolithic integration of crystalline nanowire arrays with a diverse range of organic materials. In this method, we use a nanoscale patterned soft mold, which contains an assembly of simple nanoline patterns but, in combination with droplet of various organic inks, can produce a large-scale integration of various nanopatterns with multiple kinds of organic materials. The morphology of organic nanowires can controlled by nanoconfinement in nanoline of mold. And mutual alignment of nanopatterns can be controlled by adjusting the ink droplet size, number of droplets, ink deposition locations.

  • PDF

전도성 기판에 도입된 산화아연 나노월의 능동적 성장법과 전자소자

  • Kim, Dong-Chan;Lee, Ju-Ho;Bae, Yeong-Suk;Choe, Won-Cheol;Jo, Hyeong-Gyun;Lee, Jeong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.54-54
    • /
    • 2010
  • This article reports a spontaneous method for controlling the growth mode from vertically arrayed ultra-slim MgZnO nanowires to nanowalls through the Zn random motion of seeds formed by surface phase separation by Mg injection near an evaporation temperature of Zn. The random motion of single crystal MgZnO seeds with relative Zn rich phase played a vital role in the growth of the MgZnO nanowalls. The seeds were networked with increasing Zn flux compared with Mg flux and closing to the evaporation temperature of Zn on phase separation layers. We achieved fabrication of MgZnO nanowalls on various non- and conducting substrates by this advanced growth method. The MgZnO nanowalls hydrogen sensor showed an improved sensing performance compared to the MgZnO nanowires grown under the similar conditions. Based on the microstructural characterizations, the growth procedure and models for the evolution of the structure transition from MgZnO nanowires to nanowalls on the Si substrates are proposed for phased growth times.

  • PDF

자발적 상분리법과 수열합성법을 이용한 ZnO계 일차원 나노구조의 수직 합성법 연구

  • Jo, Hyeong-Gyun;Kim, Dong-Chan;Bae, Yeong-Suk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.2-5.2
    • /
    • 2009
  • From 10 years ago, the development of nano-devices endeavored to achieve reconstruction of information technology (IT) and nano technology (NT) industry. Among the many materials for the IT and NT industry, zinc oxide (ZnO) is a very promising candidate material for the research of nano-device development. Nano-structures of ZnO-based materials were grown easily via various methods and it attracts huge attention because of their superior electrical and optical properties for optoelectronic devices. Recently, among the various growth methods, MOCVD has attracted considerable attention because it is suitable process with benefits such as large area growth, vertical alignment, and accurate doping for nano-device fabrication. However, ZnO based nanowires grown by MOCVD process were had the principal problems of 1st interfacial layers between substrate and nanowire, 2nd a broad diameter (about 100 nm), and 3rd high density, and 4th critical evaporation temperature of Zinc precursors. In particular, the growth of high performance nanowire for high efficiency nano-devices must be formed at high temperature growth, but zinc precursors were evaporated at high temperature.These problems should be repaired for materialization of ultra high performance quantum devices with quantum effect. For this reason, we firstly proposed the growth method of vertical aligned slim MgZnO nanowires (< 10 nm) without interfacial layers using self-phase separation by introduced Mg at critical evaporation temperature of Zinc precursors ($500^{\circ}C$). Here, the self-phase separation was reported that MgO-rich and the ZnO-rich phases were spontaneously formed by additionally introduced Mg precursors. In the growth of nanowires, the nanowires were only grown on the wurzite single crystal seeds as ZnO-rich phases with relatively low Mg composition (~36 at %). In this study, we investigated the microstructural behaviors of self-phase separation with increasing the Mg fluxes in the growth of MZO NWs, in order to secure drastic control engineering of density,diameter, and shape of nanowires.

  • PDF

Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires (단결정 PbTe 단일 나노선의 열전도도)

  • Roh, Jong Wook;Jang, So Young;Kang, Joohoon;Lee, Seunghyun;Noh, Jin-Seo;Park, Jeunghee;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.175-179
    • /
    • 2010
  • We investigated the thermal conductivity of individual single-crystalline PbTe nanowires grown by chemical vapor transport method. Suspended MEMS was utilized to precisely measure the thermal conductivity of an individual nanowire. The thermal conductivity of a PbTe nanowire with diameter of 292 nm was measured to be $1.8W/m{\cdot}K$ at 300 K, which is about two thirds of that of bulk PbTe. This result indicates that the thermal conduction through a PbTe nanowire is effectively suppressed by the enhanced phonon boundary scattering. As the diameter of a PbTe nanowire decreases, the corresponding thermal conductivity linearly decreases.

Applications of Nanowire Transistors for Driving Nanowire LEDs

  • Hamedi-Hagh, Sotoudeh;Park, Dae-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • Operation of liquid crystal displays (LCDs) can be improved by monolithic integration of the pixel transistors with light emitting diodes (LEDs) on a single substrate. Conventional LCDs make use of filters to control the backlighting which reduces the overall efficiency. These LCDs also utilize LEDs in series which impose failure and they require high voltage for operation with a power factor correction. The screen of small hand-held devices can operate from moderate brightness. Therefore, III-V nanowires that are grown along with transistors over Silicon substrates can be utilized. Control of nanowire LEDs with nanowire transistors will significantly lower the cost, increase the efficiency, improve the manufacturing yield and simplify the structure of the small displays that are used in portable devices. The steps to grow nanowires on Silicon substrates are described. The vertical n-type and p-type nanowire transistors with surrounding gate structures are characterized. While biased at 0.5 V, nanowire transistors with minimum radius or channel width have an OFF current which is less than 1pA, an ON current more than 1 ${\mu}A$, a total delay less than 10 ps and a transconductance gain of more than 10 ${\mu}A/V$. The low power and fast switching characteristics of the nanowire transistor make them an ideal choice for the realization of future displays of portable devices with long battery lifetime.

Enhanced Gas Sensing Properties of Pt-Loaded TeO2 Nanorods

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1851-1855
    • /
    • 2012
  • The $NO_2$ gas sensing properties of multiple-networked, Pt-loaded $TeO_2$ nanorod sensors were examined. Scanning electron microscopy revealed nanowires with diameters of 50-100 nm and lengths of a few micrometers. Transmission electron microscopy and X-ray diffraction showed that the nanrods were tetragonal-structured, single crystal $TeO_2$. The Pt-loaded $TeO_2$ nanorod sensors exhibited sensitivities of 11.00, 10.26, 11.23 and 11.97% at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively, at $300^{\circ}C$. These sensitivities were more than 10 times higher than those of bare-$TeO_2$ nanorod sensors. The response times of the sensors were 310, 260, 270 and 230 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The recovery times of the Pt-loaded $TeO_2$ nanorods were 390, 330, 335, and 330 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The origin of the enhanced sensing properties of the $TeO_2$ nanorods by Pt loading is discussed.

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property (갈륨비소-탄소나노튜브 복합체 제작과 전계방출특성)

  • Lim, Hyun-Chul;Chandrasekar, P.V.;Chang, Dong-Mi;Ahn, Se-Yong;Jung, Hyuk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.199-203
    • /
    • 2010
  • Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at $400^{\circ}C$ under an $N_2/O_2$ atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from $400^{\circ}C$ to $600^{\circ}C$. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under $500^{\circ}C$, while nanowire structures begin to form on the beads above $600^{\circ}C$. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of $2.0\;V/{\mu}m$ was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.