Browse > Article
http://dx.doi.org/10.3365.KJMM.2010.48.02.175

Thermal Conductivity in Individual Single-Crystalline PbTe Nanowires  

Roh, Jong Wook (Department of Materials Science and Engineering, Yonsei University)
Jang, So Young (Department of Chemistry, Korea University)
Kang, Joohoon (Department of Materials Science and Engineering, Yonsei University)
Lee, Seunghyun (Department of Materials Science and Engineering, Yonsei University)
Noh, Jin-Seo (Department of Materials Science and Engineering, Yonsei University)
Park, Jeunghee (Department of Chemistry, Korea University)
Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Metals and Materials / v.48, no.2, 2010 , pp. 175-179 More about this Journal
Abstract
We investigated the thermal conductivity of individual single-crystalline PbTe nanowires grown by chemical vapor transport method. Suspended MEMS was utilized to precisely measure the thermal conductivity of an individual nanowire. The thermal conductivity of a PbTe nanowire with diameter of 292 nm was measured to be $1.8W/m{\cdot}K$ at 300 K, which is about two thirds of that of bulk PbTe. This result indicates that the thermal conduction through a PbTe nanowire is effectively suppressed by the enhanced phonon boundary scattering. As the diameter of a PbTe nanowire decreases, the corresponding thermal conductivity linearly decreases.
Keywords
PbTe; thermoelectric materials; thermal conductivity; crystal growth; focused ion beam;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D. Lee, S. Misture, H. Kwon, Y. Kwon, S. Park, and J. C. Lee, J. Korean Phys. Soc. 54, 1119 (2009)   DOI   ScienceOn
2 J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, Appl. Phys. Lett. 87, 133109 (2005)   DOI   ScienceOn
3 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).   DOI   ScienceOn
4 M. Fardy, A. I. Hochbaum, J. Goldberger, M. M. Zhang, and P. Yang, Adv. Mater 19, 9047 (2007)
5 D. Abouelaoualim, Acta. Phys. Pol. A 112, 49 (2007)   DOI
6 D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 3186 (2003)   DOI   ScienceOn
7 L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 45, 16631 (1993)
8 D. Greig, Phys. Rev. 120, 358 (1960)   DOI
9 T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002)   DOI   PUBMED   ScienceOn
10 D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)   DOI   ScienceOn
11 S. Y. Jang, H. S. Kim, J. Park, M. Jung, J. Kim, S. H. Lee, J. W. Roh, and W. Lee, Nanotechnology 20, 415204 (2009)   DOI   ScienceOn
12 M. Kim, K. Park, and T. Oh, J. Kor. Inst. Met. & Mater 47, 248 (2009)
13 L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transfer 125, 881 (2003)   DOI   ScienceOn
14 J. R. Sootsman, R. J. Pcionek, H. Kong, C. Uher, and M. G. Kanatzidis, Chem. Mater. 18, 4993 (2006)   DOI   ScienceOn