DOI QR코드

DOI QR Code

Enhanced Gas Sensing Properties of Pt-Loaded TeO2 Nanorods

  • Jin, Chang-Hyun (Department of Materials science and Engineering, Inha University) ;
  • Park, Sung-Hoon (Department of Materials science and Engineering, Inha University) ;
  • Kim, Hyun-Su (Department of Materials science and Engineering, Inha University) ;
  • Lee, Chong-Mu (Department of Materials science and Engineering, Inha University)
  • Received : 2011.12.21
  • Accepted : 2012.02.28
  • Published : 2012.06.20

Abstract

The $NO_2$ gas sensing properties of multiple-networked, Pt-loaded $TeO_2$ nanorod sensors were examined. Scanning electron microscopy revealed nanowires with diameters of 50-100 nm and lengths of a few micrometers. Transmission electron microscopy and X-ray diffraction showed that the nanrods were tetragonal-structured, single crystal $TeO_2$. The Pt-loaded $TeO_2$ nanorod sensors exhibited sensitivities of 11.00, 10.26, 11.23 and 11.97% at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively, at $300^{\circ}C$. These sensitivities were more than 10 times higher than those of bare-$TeO_2$ nanorod sensors. The response times of the sensors were 310, 260, 270 and 230 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The recovery times of the Pt-loaded $TeO_2$ nanorods were 390, 330, 335, and 330 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The origin of the enhanced sensing properties of the $TeO_2$ nanorods by Pt loading is discussed.

Keywords

References

  1. Warner, A. W.; White, D. L.; Bonner, W. A. J. Appl. Phys. 1972, 43, 4489. https://doi.org/10.1063/1.1660950
  2. Antonov, S. N. Tech. Phys. 2004, 49, 1329. https://doi.org/10.1134/1.1809706
  3. Arshak, K.; Korostynska, O. Mater. Sci. Eng. B 2004, 107, 224. https://doi.org/10.1016/j.mseb.2003.11.014
  4. Arshak, K.; Korostynska, O. Sensors 2002, 2, 347. https://doi.org/10.3390/s20800347
  5. Hodgson, S. N. B.; Weng, L. J. Sol-Gel Sci. Technol. 2000, 18, 145. https://doi.org/10.1023/A:1008717003930
  6. Hodgson, S. N. B.; Weng, L. J. Mater. Sci.: Mater. Electron. 2006, 17, 723. https://doi.org/10.1007/s10854-006-0016-1
  7. Liu, Z.; Yamaznki, T.; Shen, Y.; Kikuta, T.; Nakatani, N. Jpn. J. Appl. Phys. 2008, 47, 771. https://doi.org/10.1143/JJAP.47.771
  8. Liu, Z.; Yamaznki, T.; Shen, Y.; Kikuta, T.; Nakatani, N.; Kawabata, T. Appl. Phys. Lett. 2007, 90, 173119. https://doi.org/10.1063/1.2732818
  9. Jiang, Z.-Y.; Xie, Z.-X.; Zhang, X.-H.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Inorg. Chem. Commun. 2004, 7, 179. https://doi.org/10.1016/j.inoche.2003.10.037
  10. Siciliano, T.; Tepore, A.; Micocci, G.; Genga, A.; Siciliano, M.; Filippo, E. Sens. Actuators. B 2009, 138, 207. https://doi.org/10.1016/j.snb.2009.02.007
  11. Huriet, A.; Daniele, S.; Hubert-Pfalzgraf, L. G. Mater. Lett. 2005, 59, 2379. https://doi.org/10.1016/j.matlet.2005.02.082
  12. Liu, Z.; Yamazaki, T.; Shen, Y.; Kikuta, T. Appl. Phys. Lett. 2007, 90, 173119. https://doi.org/10.1063/1.2732818
  13. Lin, Y.-H.; Huang, M.-W.; Liu, C.-K.; Chen, J.-R.; Wu, J.-M.; Shih, H. C. J. Electrochem. Soc. 2009, 156, K196. https://doi.org/10.1149/1.3223984
  14. Ramgir, N. S.; Mulla, I. S.; Vijayamohanan, K. P. Sens. Actuators B 2005, 107, 708. https://doi.org/10.1016/j.snb.2004.12.073
  15. Wan, Q.; Wang, T. H. Chem. Commun. 2005, 3841.
  16. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Nano Lett. 2005, 5, 667. https://doi.org/10.1021/nl050082v
  17. Kuang, Q.; Lao, C. S.; Li, Z.; Liu, Y. Z.; Xie, Z. X.; Zheng, L. S.; Wang, Z. L. J. Phys. Chem. C 2008, 112, 11539.
  18. Wright, J. S.; Lim, W.; Gila, B. P.; Pearton, S. J.; Johnson, J. L.; Ural, A.; Ren, F. Sens. Actuators B 2009, 140, 196. https://doi.org/10.1016/j.snb.2009.04.009
  19. Xue, X.; Xing, L.; Chen, Y.; Shi, S.; Wang, Y.; Wang, T. J. Phys. Chem. C 2008, 112, 12157.
  20. Chen, Y.-J.; Zhu, C.-L.; Wang, L.-J.; Cao, P.; Cao, M.-S.; Shi, X.- L. Nanotechnology 2009, 20, 045502. https://doi.org/10.1088/0957-4484/20/4/045502
  21. Park, J. Y.; Choi, S. W.; Lee, J. W.; Lee, C.; Kim, S. S. J. Am. Ceram. Soc. 2009, 92, 2551. https://doi.org/10.1111/j.1551-2916.2009.03270.x
  22. Oh, E.; Choi, H.-Y.; Jung, S.-H.; Cho, S.; Kim, J. C.; Lee, K.-H.; Kang, S.-W.; Kim, J.; Yun, J.-Y.; Jeong, S.-H. Sens. Actuators B 2009, 141, 239. https://doi.org/10.1016/j.snb.2009.06.031
  23. Kaur, J.; Kumar, R.; Bhatnagar, M. C. Sens. Actuators B 2007, 126, 478. https://doi.org/10.1016/j.snb.2007.03.033
  24. Vomiero, A.; Bianchi, S.; Comini, E.; Faglia, G.; Ferroni, M.; Sberveglieri, G. Cryst. Growth Des. 2007, 7, 2500. https://doi.org/10.1021/cg070209p
  25. Liu, Z.; Miyauchi, M.; Yamazaki, T.; Shen, T. Sens. Actuators B 2009, 140, 514. https://doi.org/10.1016/j.snb.2009.04.059
  26. Choi, S.-W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. https://doi.org/10.1088/0957-4484/20/46/465603
  27. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Nano Lett. 2005, 5, 667. https://doi.org/10.1021/nl050082v
  28. Liu, Z.; Yamazaki, T.; Shen, Y.; Kikuta, T. Appl. Phys. Lett. 2007, 90, 173119. https://doi.org/10.1063/1.2732818
  29. Fryberger, T. B.; Semancik, S. Sens. Actuators B 1990, 2, 305. https://doi.org/10.1016/0925-4005(90)80158-V
  30. Gao, T.; Wang, T. H. Appl. Phys. A: Mater. Sci. Process 2005, 80, 1451. https://doi.org/10.1007/s00339-004-3075-2

Cited by

  1. nanostructured gas sensors vol.5, pp.88, 2015, https://doi.org/10.1039/C5RA12263E
  2. Optimization of the Pt Nanoparticle Size and Calcination Temperature for Enhanced Sensing Performance of Pt-Decorated In2O3 Nanorods vol.73, pp.10, 2018, https://doi.org/10.3938/jkps.73.1444
  3. Fabrication and NO 2 gas sensing performance of TeO 2 -core/CuO-shell heterostructure nanorod sensors vol.9, pp.1, 2012, https://doi.org/10.1186/1556-276x-9-638
  4. TeO2 nanostructures as a NO2 sensor: DFT investigation vol.1049, pp.None, 2012, https://doi.org/10.1016/j.comptc.2014.09.009
  5. Enhanced room-temperature NO2 gas sensing with TeO2/SnO2 brush- and bead-like nanowire hybrid structures vol.28, pp.4, 2012, https://doi.org/10.1088/1361-6528/28/4/045501