• Title/Summary/Keyword: Single switch

Search Result 568, Processing Time 0.025 seconds

A Study on RF MEMS Switch with Comb Drive (Comb drive를 이용한 RF MEMS 스위치에 관한 연구)

  • Kang, Sung-Chan;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.7-12
    • /
    • 2008
  • This paper presents a lateral resistive contact RF MEMS switch using comb drive. Our goal was to fabricate the RF MEMS switch with high reliability and good RF characteristics for front end module in wireless transceiver system. Therefore, comb drive is used for large contact force in order to achieve low insertion loss and small off-state capacitance in order to achieve high isolation. The single crystalline silicon is used for mechanical reliability. As a result, the developed switch showed insertion loss less than 0.44 dB at 2 GHz, isolation greater than 60 dB, and low actuation voltage at 26 V.

Design and Implementation of a Fault Simulation System for Mixed-level Combinational Logic Circuits (혼합형 조합 회로용 고장 시뮬레이션 시스템의 설계 및 구현)

  • Park, Yeong-Ho;Son, Jin-U;Park, Eun-Se
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.311-323
    • /
    • 1997
  • This paper presents a fast fault simulation system for detecting stuck-at faults in mixed-level combinational logic circuits with gale level and switch -level primitives. For a practical fault simulator, the types are not restricted to static switch-level and/or gate-level circuits, but include dynamic switch-level circuits. To efficiently handle the multiple signal contention problems at wired logic elements, we propose a six-valued logic system and its logic calculus which are used together with signal strength information. As a basic algorithm for the fault simulation process, a well -known gate-level parallel pattern single fault propagation(PPSFP) technique is extended to switch-level circuits in order to handle pass-transistor circuits and precharged logic circuits as well as static CMOS circuits. Finally, we demonstrate the efficiency of our system through the experimental results for switch-level ISCAS85 benchmark combinational circuits and various industrial mixed-level circuits.

  • PDF

Characteristic of fuel Cell DC-AC Inverter Using New Active Clamping Method (새로운 능동 클램핑방식을 이용한 연료전지용 DC-AC 인버터의 특성)

  • Kim, C.Y.;Cho, M.C.;Mun, S.P.;Kim, Y.J.;Nakaoka, Mutsuo;Kim, H.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.337-340
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V], In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch S5 and S6 in the secondary switch, which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household.

  • PDF

New Circuit Topology of Single-Ended Soft-Switching PWM High Frequency Inverter and Its Performance Evaluations

  • Deguchi Y.;Moisseev S.;Nakaoka M.;Hirota I.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.247-250
    • /
    • 2001
  • This paper presents a simple and cost effective circuit topology of single-ended type high frequency quasi-resonant PWM inverter using IGBTs, which can operate under wide soft switching operation range based on ZCS for main power switch as compared with a conventional active voltage-clamped ZVS-PWM high frequency quasi-resonant inverter developed previously. In principle, this new circuit topology can efficiently operate under a constant frequency PWM control-based power regulation scheme. In particular, it is noted that the zero current soft switching (ZCS) commutation can achieve for the main active power switch. On the other hand, the zero voltage soft switching (ZVS) commutation can also achieve for the auxiliary active power switch. The operating principle of this high-frequency Inverter treated here and its power regulation characteristics are illustrated on the basis of the simulation and feasible experimental results.

  • PDF

High Performance and Low Cost Single Switch Energy Recovery Display Driver for AC Plasma Display Panel

  • Han Sang Kyoo;Moon Gun-Woo;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.723-727
    • /
    • 2004
  • A new high-performance and low cost single switch energy recovery display driver for an AC plasma display panel (PDP) is proposed. Since it is composed of only one auxiliary power switch, two small inductors, and eight diodes compared with the conventional circuit consisting of four auxiliary power switches, two small inductors, eight power diodes, and two external capacitors, it features a much simpler structure and lower cost. Nevertheless, since the rootmean-square (RMS) value of the inductor current is very small, it also has very desirable advantages such as n low conduction loss and high efficiency. Furthermore, there are no serious voltage-drops caused by the large gas-discharge current with the aid of the discharge current compensation, which can also greatly reduce the current flowing through power switches and maintain the panel to light at n lower sustaining voltage. In addition, all main power switches are turned on under the zero-voltage switching (ZVS) and thus, the proposed circuit has a improved EMI, increased reliability, and high efficiency. Therefore, the proposed circuit will be well suited to the wall hanging PDP TV. To confirm the validity of the proposed circuit, circuit operations, features,and design considerations are presented and verified experimentally on a 6-inch PDP, 50kHz-switching frequency, and sustaining voltage 141V based prototype.

  • PDF

Utility-Interactive Four-Switch Three-Phase Soft-Switching Inverter with Single Resonant DC-Link Snubber and Boost Chopper

  • Ahmed, Tarek;Nagai, Shinichiro;Nakaoka, Mutsuo;Tanaka, Toshihiko
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • In this paper, a novel proposal for a utility-interactive three-phase soft commutation sinewave PWM power conditioner with an auxiliary active resonant DC-link snubber is developed for fuel cell and solar power generation systems. The prototype of this power conditioner consists of a PWM boost chopper cascaded three-phase power conditioner, a single two-switch auxiliary resonant DC-link snubber with two electrolytic capacitors incorporated into one leg of a three-phase V-connection inverter and a three-phase AC power source. The proposed cost-effective utility-interactive power conditioner implements a unique design and control system with a high-frequency soft switching sinewave PWM scheme for all system switches. The operating performance of the 10 kW experimental setup including waveform quality, EMI/RFI noises and actual efficiency characteristics of the proposed power conditioner are demonstrated on the basis of the measured data.

Modified Single-Phase SRM Drive for Low Torque Ripple and Power Factor Improvement (저토크리플 및 역률개선을 위한 수정된 단상 SRM 구동시스템)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.975-982
    • /
    • 2007
  • The single-phase switched reluctance motor(SRM) drive requires DC source which is generally supplied through a rectifier connected with a commercial source. The rectifier is consist of a diode full bridge and a filter circuit. Usually the filter circuit uses capacitor with large value capacitance to reduce ripple component of DC power. Although the peak torque ripple of SRM is small, the short charge and discharge current of the filter capacitor draws the low power factor and system efficiency. A modified single phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor. In the proposed drive circuit, one switching part and diode which can separate the output of AC/DC rectifier from the filter capacitor is added. Also, a upper switch of drive circuit is exchanged a diode in order to reduce power switching device. Therefore the number of power switch device is not changed, two diodes are only added in the SRM drive. To verify the proposed system, some simulation and experimental results are presented.

Characteristic Estimation of Single-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공진 인버터의 특성 평가)

  • 원재선;강진욱;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.114-122
    • /
    • 2004
  • This paper presents a novel single-stage active-clamp type high frequency resonant inverter. The proposed topology is integrated full-bridge boost rectifier as power factor corrector and active-clamp type high frequency resonant inverter into a single-stage. The input stage of the full-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. By adding additional active-clamp circuit to conventional class-E high frequency resonant inverter, main switch of inverter part operates not only at Zero-Voltage-Switching mode but also reduces the switching voltage stress of main switch. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics estimation through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in the fields of induction heating applications, fluorescent lamp and DC-DC converter etc.

Broadband Microwave SPDT Switch Using CPW Impedance Transform Network (CPW 임피던스 변환회로를 이용한 광대역 마이크로파 SPDT 스위치)

  • Lee Kang Ho;Park Hyung Moo;Rhee Jin Koo;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.57-62
    • /
    • 2005
  • This paper describes the design of a high performance microwave single pole double throw (SPDT) monolithic microwave integrated circuit switch using GaAs pHEMT process. The switch design proposes a novel coplanar waveguide (CPW) impedance transform network which results in the low insertion loss and high isolation by compensating for the FET parasitics to get the low on-resistance and low off-capacitance. The proposed switch has the measured isolation of better than 24 dB and insertion loss of less than 2.6 dB from 53 to 61 GHz. The chip is fabricated with the size of 2.2mm $\times$ 1.6 mm.

Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.367-376
    • /
    • 2016
  • This paper presents a cell balancing method for a single switch flyback converter with a multi-winding transformer. The conventional method using a flyback converter with a multi-winding transformer is simple and easy to control, but the voltage of each secondary winding coil might be non-uniform because of the unequal effective turn-ratio. In particular, it is difficult to control the non-uniform effect using turn-ratios because secondary coil has a limited number of turns. The non-uniform secondary voltages disturb the cell balancing procedure and induce an unbalance in cell voltages. Individual cell control by adding a switch for each cell can reduce the undesirable effect. However, the circuit becomes bulky, resulting in additional loss. The proposed method here uses the conventional flyback converter with an adjustment made to the output filters of the cells, instead of the additional switch. The magnitude of voltage applied to a particular cell can be reduced or increased according to the adjusted filter and the selected switching frequency. An analysis of the conventional converter configuration and the filter design method reveals the possibility of adequate cell balancing control without any additional switch on the secondary side.