• Title/Summary/Keyword: Single shear

Search Result 860, Processing Time 0.022 seconds

Experimental Study and Comparison of Analysis Results on Structural Method of Prestressed Concrete Slab Using Light Hybrid rib to Long Span (장스팬형 경량복합리브 PSC슬래브 구조공법에 관한 비교분석 및 실험적 연구)

  • Shim, Namju;Oh, Jungkeun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.5
    • /
    • pp.3-10
    • /
    • 2017
  • The HBS slab is a method in which a lightweight sieve is installed on top of the psc slab and two ribs of the neighboring psc slab are combined with ribs formed by the site concrete to act as a single member on the same axis. The purpose of this study is to implement the performance comparison with the existing method through the experimental study on the PSC slab method. In this study, the HBS slab was developed as a method to improve the limit of the existing method and the performance comparison with the existing method is tried to verify its superiority. The comparison of the structural performance with the existing method is carried out through the experimental study of the HBS slab, and the structural performance against the bending performance and shear and the bonding performance between the pc beam and the hbs slab are examined and compared with the existing method through the theoretical method.

Effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin

  • Singh, Payal;Nagpal, Rajni;Singh, Udai Pratap
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.188-199
    • /
    • 2017
  • Objectives: This in vitro study evaluated the effect of dentin biomodifiers on the immediate and long-term bond strengths of a simplified etch and rinse adhesive to dentin. Materials and Methods: Flat coronal dentin surfaces were prepared in 120 extracted human molars. Teeth were randomly divided into 5 groups (n = 24) according to 5 different surface pre-treatments: No pre-treatment (control); 1M carbodiimide (EDC); 0.1% epigallocatechin-3-gallate (EGCG); 2% minocycline (MI); 10% sodium ascorbate (SA). After surface pre-treatment, adhesive (Adper Single Bond 2 [SB], 3M ESPE) was applied. Composite was applied into transparent plastic tubes (2.5 mm in diameter), which was placed over the bonded dentin surface. From each group, 10 samples were subjected to shear bond strength (SBS) evaluation at 24 hours (immediate) and remaining 10 samples were tested after 6 months (delayed). Additionally, 4 samples per group were subjected to scanning electron microscopic analysis for observation of resin-dentin interface. The data were statistically analysed with Shaperio-Wilk W test, 2-way analysis of variance (ANOVA), and post hoc Tukey's test. Results: At 24 hours, SBS of all surface pre-treatment groups were comparable with the control group, with significant differences found between EDC and SA groups only (p = 0.009). After 6 months storage, EDC, EGCG, and MI pre-treatments preserved the resindentin bond strength with no significant fall. Conclusions: Dentin pre-treatment with all the dentin biomodifiers except SA resulted in significant preservation of resin-dentin bond over 6 months storage period, without negatively affecting the immediate bond strength of the etch and rinse adhesive tested.

Comparison of Vibrational Displacements Generated by Different Types of Surface Source in a Soft Tissue (여러 종류의 표면 진동원에 대한 연조직에서의 진동 변위 비교)

  • Park, Jeong Man;Kwon, Sung-Jae;Jeong, Mok-Kun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.469-483
    • /
    • 2012
  • The propagation characteristics of a mechanical wave in human soft tissue depend on its elastic properties. Investigation of these propagation characteristics is of paramount importance because it may enable us to diagnose cancer or tumor from the vibration response of the tissue. This paper investigates and compares displacement patterns generated in soft tissue due to several forms of low-frequency vibration sources placed on a surface. Among vibration sources considered are a normal load, tangential load, and antiplane shear load. We derive analytical expressions for displacements in viscoelastic single layers, and calculate displacement patterns in half space and infinite plate type tissue. Also, we simulate the vibration response of a finite-sized tissue using finite element method. The effects of the type of stress, the size and frequency of vibration sources, and medium boundaries on displacement patterns are discussed.

Identifying Strain Associated with Damping Ratio from Tosional Test Using a Combined Damping Model (복합감쇠모델을 이용한 비틂 시험기로 얻은 감쇠비에 상응하는 변형률 산정)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 2008
  • The complexity of determining strain associated with shear modulus and damping ratio in torsional tests has been resolved by means of several approaches. Particularly, the modified equivalent radius approach is adequate to when generating the plots of equivalent radius ratio versus strain more effectively over any range of strains in resonant column and torsional shear (RC/TS) tests. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models in evaluating damping ratio. Results showed that using a single value of equivalent radius ratio based on conventional equivalent radius approach is not appropriate. A new model was developed to consider the soil damping behavior at small strains as well as hysteretic damping and it was attempted to determine adjustments are required in evaluating strain associated damping when combining the two damping components.

Effect of curing conditions on mode-II debonding between FRP and concrete: A prediction model

  • Jiao, Pengcheng;Soleimani, Sepehr;Xu, Quan;Cai, Lulu;Wang, Yuanhong
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.635-643
    • /
    • 2017
  • The rehabilitation and strengthening of concrete structures using Fiber-Reinforced Polymer (FRP) materials have been widely investigated. As a priority issue, however, the effect of curing conditions on the bonding behavior between FRP and concrete structures is still elusive. This study aims at developing a prediction model to accurately capture the mode-II interfacial debonding between FRP strips and concrete under different curing conditions. Single shear debonding experiments were conducted on FRP-concrete samples with respect to different curing time t and temperatures T. The J-integral formulation and constrained least square minimization are carried out to calibrate the parameters, i.e., the maximum slip $\bar{s}$ and stretch factor n. The prediction model is developed based on the cohesive model and Arrhenius relationship. The experimental data are then analyzed using the proposed model to predict the debonding between FRP and concrete, i.e., the interfacial shear stress-slip relationship. A Finite Element (FE) model is developed to validate the theoretical predictions. Satisfactory agreements are obtained. The prediction model can be used to accurately capture the bonding performance of FRP-concrete structures.

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

State recognition of fine blanking stamping dies through vibration signal machine learning (진동신호 기계학습을 통한 프레스 금형 상태 인지)

  • Seok-Kwan Hong;Eui-Chul Jeong;Sung-Hee Lee;Ok-Rae Kim;Jong-Deok Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2022
  • Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.

The Influence of Reduction of Vertical Stress on the Behaviour of Piles Subjected to Negative Skin Friction (수직응력의 감소가 부마찰이 작용하는 말뚝의 거동에 미치는 영향)

  • Lee, Cheol-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.33-39
    • /
    • 2009
  • Vertical soil stress near a pile subjected to negative skin friction (NSF) may be reduced due to shear transfer at the pile-soil interface. A three-dimensional finite difference analysis has been performed to clarify the influence of vertical and horizontal stress reductions on the pile behavour. In addition, a simple equation has been proposed to estimate vertical stress reduction of the soil near the pile. The vertical and horizontal stresses are reduced by substantial amount compared to corresponding stress components at the Greenfield condition. The horizontal extent of vertical stress reduction of the soil near the pile is rather limited to about up to 4-8 D, where D is the pile diameter. The findings from the current research indicate that widely used $\beta$-method may result in over-estimation of dragload (compressive force on piles due to NSF) and hence stress reduction needs to be incorporated in the original equation.

Genome-wide association studies to identify quantitative trait loci and positional candidate genes affecting meat quality-related traits in pigs

  • Jae-Bong Lee;Ji-Hoon Lim;Hee-Bok Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1194-1204
    • /
    • 2023
  • Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, tenderness and marbling. These traits are complex because they are affected by multiple genetic and environmental factors. The aim of this study was to investigate the molecular genetic basis underlying nine meat quality-related traits in a Yorkshire pig population using a genome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model association (GEMMA) method. This linear mixed model-based approach identified two quantitative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and explained 3.92%-4.57% of the phenotypic variance of the traits of interest. The genes encoding HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for these QTLs. The results of the biological pathway analysis revealed that positional candidate genes for meat color (b*) were enriched in pathways related to muscle development, muscle growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas positional candidate genes for shear force were overrepresented in pathways related to cell growth, cell differentiation, and fatty acids synthesis. Further verification of these identified SNPs and genes in other independent populations could provide valuable information for understanding the variations in pork quality-related traits.