• Title/Summary/Keyword: Single shear

Search Result 862, Processing Time 0.033 seconds

Shear Strength of Retrofitted RC Squat Wall by Additional Boundary Element (단부 증타 보강된 RC 전단벽체의 전단강도)

  • Yi, You-Sun;Hong, Sung-Gul;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.489-499
    • /
    • 2015
  • This study suggested shear strength prediction model for retrofitted single-layered RC squat wall by providing column element as additional boundary element. This model revised existing shear strength prediction model of shear wall to consider detail and shear deformation capacity of column by assuming the length that concentrated shear deformation of the column is occurred. It was able to suggest additional compatibility condition related to shear strain of retrofitted of retrofitted shear wall at the ultimate state by using this length. Therefore, this study proposed a flow chart for predicting shear strength of the retrofitted shear wall considering this additional condition. Moreover, this study also proposed a method for predicting initial stiffness of the retrofitted shear wall by transforming the wall's resisting mechanism against to lateral load to a single diagonal strut mechanism. The proposed methods can predict shear strength and initial stiffness of not only the retrofitted shear wall of this study, also infilled RC shear wall in RC frame.

Shear Bond Strengths of Dentin Bonding Agent containing 0.2% Chlorhexidine (클로르헥시딘을 함유한 상아질 결합제의 전단결합강도)

  • Kim, Jinhyock;Kim, Kiseob;Kim, Jongsoo;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • The purpose of this study is to investigate shear bond strengths of $Peak^{(R)}$ Universal Bond (Ultradent, USA) containing 0.2% chlorhexidine in bovine dentin. Total of 30 bovine teeth were divided into three groups, 10 teeth each. Before comparing and evaluating shear bond strength, in group I, $Adper^{TM}$ Single Bond Universal (3M ESPE, USA) was applied, in group II, processing with $Consepsis^{(R)}$ (Ultradent, USA) was followed by applying $Adper^{TM}$ Single Bond Universal, and in group III, $Peak^{(R)}$ Universal Bond was applied and filled with $Filtek^{TM}$ Z-350 XT (3M/ESPE, USA) shade B3. As a result, processing with $Consepsis^{(R)}$ after acid etching showed no statistically significant influence on shear bond strength of dentin (p > 0.05). The shear bond strength of with or without $Consepsis^{(R)}$ on $Adper^{TM}$ Single Bond Universal and that of $Peak^{(R)}$ Universal Bond showed statistically significant difference (p < 0.05).

SHEAR BOND STRENGTH OF COMPOSITE RESIN CORE USED IN COMBINATION WITH VARIOUS RESIN CEMENTS AND DENTIN BONDING AGENTS (레진 시멘트와 상아질접착제를 사용한 콤포지트 레진 코아의 전단결합강도에 관한 연구)

  • Kim Hyun-O;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.30-40
    • /
    • 2004
  • Purpose : The purpose of this study was aimed to compare the shear bond strength on dentin of three dentin bonding agents and two resin cements used in conjunction with self-cured composite resin core material. Material and method : Control group and six experimental groups were divided for this study. Control group was designated as specimens bonded with Tenure$ A&B^{(R)}$. Experimental groups were as follows : PB-BL group : specimens bonded with Prime&Bond $NT^{(R)}$, $BondLink^{(R)}$ SB-BL group : specimens bonded with $^{(R)}$, BondLink$SingleBond^{(R)}$ PB group : specimens bonded with Prime&Bond $NT^{(R)}$ SB group : specimens bonded with $SingleBond^{(R)}$ PF group : specimens bonded with $Panavia-F^{(R)}$ BI group specimens bonded with Bistite $II^{(R)}$ All specimens were stored in $37^{\circ}C$ distilled water for 24 hours, followed by the shear bond strength was tested by universal testing machine. The data was analysed statistically by Mann-Whitney test. Results : 1. For Prime&Bond $NT^{(R)}$ and $SingleBonde^{(R)}$, the shear bond strength was 0.24 MPa and 7.19 MPa each by each, while Tenure $A&B^{(R)}$ group control was measured at 13.93 MPa (p<0.05). Especially for Prime&Bond $NT^{(R)}$ it did not get conjunction with dentin. 2. For Prime&Bond $NT^{(R)}$ and $SingleBond^{(R)}$ using $BondLink^{(R)}$, there was no significant difference as a result of 11.73 MPa and 14.00 MPa each by each (p<0.05). 3. For $Panavia-F^{(R)}$ and Bistite $II^{(R)}$, they showed the highest shear bond strength as measured by 18.24 MPa and 16.09 MPa each (p<0.05).

A STUDY ON THE FORMATION OF SHEAR BONDING STRENGTH AND HYBRID LAYER ACCORDING TO THE APPLICATION TIME AND FREQUENCY OF AN ALL-IN-ONE SYSTEM IN PRIMARY TEETH. (유치에서 All-In-One system의 적용 시간과 적용 횟수에 따른 전단 결합 강도 및 혼성층 형성에 관한 연구)

  • Hong, Sang-Jin;Park, Jong-Whi;Park, Heon-Dong;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.263-271
    • /
    • 2003
  • The purpose of the present study was to evaluate the patterns of hybrid layer according to the application time and the frequency and its effects on the shear bonding strength of All-In-One system in primary teeth. A single bonding agent(Scotchbond Multi-Purpose Plus, 3M) and an All-In-One system(Prompt L-pop, 3M ESPE) were applied on the dentin varying the application time and the frequency in primary teeth. Shear bond strength was measured and the patterns of hybrid layers were observed by SEM. The following results were obtained ; 1. The shear bonding strength of single bonding agent was significantly higher than that of All-In-One system(P<0.05). 2. The shear bonding strength of All-In-One system applied twice or 3 times were higher than that of applied once (P<0.05). And thickness of the hybrid layer was increased when applied twice or 3 times compared to once. 3. The shear bonding strength of All-In-One system when applied for 15 second and 30 second were higher than that of 7 second (P<0.05). And the hybrid layer thickness of 15 second and 30 second's application time were higher than that of 7 second. 4. Thickness of hybrid layer applied with single bonding agent was $2-4{\mu}m$ and that of All-In-One system was $1-2{\mu}m$.

  • PDF

Shear Strength of an Aluminum Alloy Bonded with a DP-460 Adhesive: Single Lap-shear Joints

  • Kim, Hyun-Bum;Nishida, Tomohisa;Oguma, Hiroyuki;Naito, Kimiyoshi
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Single lap-shear joints (SLJ) specimens with and without partial round fillets were fabricated to measure the average shear strength of adhesives. The effects of the length of the adherend on the SLJ specimens were also investigated. An epoxy adhesive was used to bond aluminum alloy. Tensile tests were performed on the adhesive bulk specimens to measure the mechanical properties. The finite element analysis (FEA) method was used to measure the adhesive stress distributions, i.e., the peel and shear stresses, on the bonded part. The experimental results revealed that the specimen consisting short length of adherend and without the partial round fillets exhibited the smallest average shear strength of adhesive among the investigated specimens. FEA revealed that the low average shear strength for the specimen with a short adherend length was caused by high stress concentrations on the adhesive at the edge of the bonded part.

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.

Effect of shear on poly(styrene-b-isoprene) copolymer micelles

  • Bang, Joon-A;Lodge, Timothy P.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.227-232
    • /
    • 2007
  • The use of various shearing apparatuses to study the phase behavior of poly(styrene-b-isoprene) diblock copolymer micelles is described. A DMTA rheometer was modified so that one can apply oscillatory shear and obtain the scattering pattern along the shear gradient direction. A cone and plate shear cell was designed to access scattering along the shear vorticity direction, and both oscillatory and steady shear can be applied. The most popular way to employ steady shear on relatively low viscosity fluids is to use a Couette cell, because a high shear rate can be readily achieved without disturbing the sample by overflow. In this work, oscillatory shear was used to obtain a single crystal-like scattering pattern, and thereby to examine the mechanism of the thermotropic transition between face-centered cubic (fcc) and body-centered cubic (bcc) lattices. By applying the steady shear, the response of the fcc lattices to various shear rates is discussed.

Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders

  • Bian, Z.G.;Wang, Y.H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.355-371
    • /
    • 2013
  • Single- and multi-span orthotropic functionally graded hollow cylinders subjected to axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the transverse displacement is expressed by means of a general shape function. To approach the through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium equations are established, which are then solved analytically using the transfer matrix method for arbitrary boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical examples.

Variation of fracture strength of adhesive joint according to the operating temperature (사용환경온도에 따른 접착이음의 인장전단강도 변화)

  • Kim, J.Y.;Lee, C.J.;Lee, S.K.;Park, G.W.;Jung, B.H.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.517-520
    • /
    • 2008
  • Recently, use of adhesive bonding technology is increased to achieve the multi-material design for lightweight structure in automobile industry. In this paper, the fracture strength of adhesive has been studied with the single lap shear test conducted at different temperatures. The joint specimens are made from Al 5052 and SPRC 440 bonded with structural epoxy adhesive. The operating temperature has been considered up to $150[^{\circ}C]$ and the single lap shear test has been conducted with 5mm/min tensile rate. Fracture strength of adhesive bonded joint has been decreased with increase of operating temperature. The fracture strength at the $100[^{\circ}C]$ was shown about half of that at room temperature.

  • PDF

An Experimental Study on the Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하의 피로균열 전파거동에 관한 실험적 연구)

  • Song, Sam-Hong;Lee, Jeong-Moo;Hong, Suck-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.119-124
    • /
    • 2003
  • In this study, retardation behavior of fatigue crack under single overloading of the mixed mode I+II state was experimentally investigated. To produce single overload in the mixed mode I+II state, the compact tension shear (CTS) specimen and loading device were used. The propagation tests for fatigue crack were performed under mode I loading overloading afterwards. We examined the observed deformation aspects, variation of fatigue life and crack propagation rate, and the aspects of retardation behavior from tests. The retardation effect of mixed-mode single overload on fatigue crack propagation behavior was smaller than that of mode I single overload. It has been confirmed that the retardation behavior did not immediately appear and the retardation length was short when the component of mixed-mode overload was changed.

  • PDF