• 제목/요약/키워드: Single reactor

검색결과 398건 처리시간 0.021초

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

EVOLUTION OF NUCLEAR FUEL MANAGEMENT AND REACTOR OPERATIONAL AID TOOLS

  • TURINSKY PAUL J.;KELLER PAUL M.;ABDEL-KHALIK HANY S.
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper are reviewed the current status of nuclear fuel management and reactor operational aid tools. In addition, we indicate deficiencies in current capabilities and what future research is judged warranted. For the nuclear fuel management review the focus is on light water reactors and the utilization of stochastic optimization methods applied to the lattice, fuel bundle, core loading pattern, and for BWRs the control rod pattern/core flow design decision making problems. Significant progress in addressing separately each of these design problems on a single cycle basis is noted; however, the outstanding challenge of addressing the integrated design problem over multiple cycles under conditions of uncertainty remains to be addressed. For the reactor operational aid tools review the focus is on core simulators, used to both process core instrumentation signals and as an operator aid to predict future core behaviors under various operational strategies. After briefly reviewing the current status of capabilities, a more in depth review of adaptive core simulation capabilities, where core simulator input data are adjusted within their known uncertainties to improved agreement between prediction and measurement, is presented. This is done in support of the belief that further development of adaptive core simulation capabilities is required to further significantly advance the utility of core simulators in support of reactor operational aid tools.

PC에 의한 열중성자로 중성자의 무작위 특성 측정 (PC-Based Random Neutron Process Measurement in a Thermal Reactor)

  • Jun, Byung-Jin;Park, Sang-Jun;Hong, Kwang-Pyo;Lee, Chung-Sung
    • Nuclear Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.58-65
    • /
    • 1990
  • 열중성자로의 무작위 중성자 특성을 PC로써 측정하는 체계를 개발하고 이를 한국에너지연구소의 TRIGA Mark-II 원자로에 응용하였다. 그 결과 이 체계는 재래의 여러 방법에 비하여 많은 장점을 가지고 있음을 확인하였다. 아직은 한개의 계측기를 사용하였고, 즉발중성자만 고려한 시간 영역에 대하여 autocorrelation과 VTMR 두가지 방법으로 분석하였다. 두 방법의 결과는 서로 잘 일치하였으나 통계적인 신뢰도 면에서는 VTMR이 훨씬 나았고, 특히 임계 근처에서 이것이 두드러졌다. TRIGA Mark-II의 $\beta$/Λ 는 임계에서 -3$까지는 약 125/초, -4$이하에서는 약 150/초로 측정되었다.

  • PDF

Validation of UNIST Monte Carlo code MCS using VERA progression problems

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Choi, Sooyoung;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.878-888
    • /
    • 2020
  • This paper presents the validation of UNIST in-house Monte Carlo code MCS used for the high-fidelity simulation of commercial pressurized water reactors (PWRs). Its focus is on the accurate, spatially detailed neutronic analyses of startup physics tests for the initial core of the Watts Bar Nuclear 1 reactor, which is a vital step in evaluating core phenomena in an operating nuclear power reactor. The MCS solutions for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) core physics benchmark progression problems 1 to 5 were verified with KENO-VI and Serpent 2 solutions for geometries ranging from a single-pin cell to a full core. MCS was also validated by comparing with results of reactor zero-power physics tests in a full-core simulation. MCS exhibits an excellent consistency against the measured data with a bias of ±3 pcm at the initial criticality whole-core problem. Furthermore, MCS solutions for rod worth are consistent with measured data, and reasonable agreement is obtained for the isothermal temperature coefficient and soluble boron worth. This favorable comparison with measured parameters exhibited by MCS continues to broaden its validation basis. These results provide confidence in MCS's capability in high-fidelity calculations for practical PWR cores.

Validation of the correlation-based aerosol model in the ISFRA sodium-cooled fast reactor safety analysis code

  • Yoon, Churl;Kim, Sung Il;Lee, Sung Jin;Kang, Seok Hun;Paik, Chan Y.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3966-3978
    • /
    • 2021
  • ISFRA (Integrated SFR Analysis Program for PSA) computer program has been developed for simulating the response of the PGSFR pool design with metal fuel during a severe accident. This paper describes validation of the ISFRA aerosol model against the Aerosol Behavior Code Validation and Evaluation (ABCOVE) experiments undertaken in 1980s for radionuclide transport within a SFR containment. ABCOVE AB5, AB6, and AB7 tests are simulated using the ISFRA aerosol model and the results are compared against the measured data as well as with the simulation results of the MELCOR severe accident code. It is revealed that the ISFRA prediction of single-component aerosols inside a vessel (AB5) is in good agreement with the experimental data as well as with the results of the aerosol model in MELCOR. Moreover, the ISFRA aerosol model can predict the "washout" phenomenon due to the interaction between two aerosol species (AB6) and two-component aerosols without strong mutual interference (AB7). Based on the theory review of the aerosol correlation technique, it is concluded that the ISFRA aerosol model can provide fast, stable calculations with reasonable accuracy for most of the cases unless the aerosol size distribution is strongly deformed from log-normal distribution.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.

단상 인버터의 동작에 의한 이중접속 3상 전압원 인버터의 출력파형 개선 (Output Waveform Improvement of Double-Connected 3-Phase Voltage Source Inverter by Single-Phase Inverter)

  • 최세완
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.330-334
    • /
    • 2000
  • This paper proposes a new double-connected 3-phase voltage source inverter with improved output voltage waveform. An auxiliary single-phase inverter injects a ripple voltage into the double- connected inverter to convert 12-step operation to 36-step operation. The KVA rating of the output phase-shifting transformer is reduced by employing a harmonic canceling reactor. The whole rectifier-inverter system including the proposed technique is introduced and the experimental results are provided.

  • PDF

Ignition Behavior of Single Coal Particles From Different Coal Ranks at High Heating Rate Condition

  • Lee, Dongfang;Kim, Ryang Gyoon;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.111-114
    • /
    • 2012
  • The ignition behavior of single coal particles of five kindes of coal with different ranks (low volatile bituminous, low volatile sub-bituminous, high volatile bituminous, lignite) with particle size of $150-200{\mu}m$ was investigated at high heating rate condition. Particles were injected into a laminar flow reactor and the ignition behavior was observed with high speed cinematography. Sub-bituminous were observed to ignite homogeneously; however, low volatile bituminous coal and lignite undergo fragmentation prior to igntion. The observation was analyzed with previous work.

  • PDF

3상 자속구속형 한류기의 초전도 소자 직렬연결 특성분석 (Characteristics of Superconducting Elements in Series-Connected Three-Phase Flux-Lock type SFCL)

  • 박형민;최효상;조용선;황종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.35-36
    • /
    • 2007
  • We investigated the characteristics of three phase flux-lock type SFCL. Three phase flux-lock type consists of three reactor wound on an iron core in each single phase and the secondary coil is connected to the superconducting elements in series. the superconducting elements with serial connection were quenched simultangously in the single line-to-ground fault.

  • PDF