• Title/Summary/Keyword: Single photon detector

Search Result 46, Processing Time 0.021 seconds

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman;Choi, Gahyun;Lee, Sun Kyung;Park, Kibog;Song, Woon;Lee, Dong-Hoon;Chong, Yonuk
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.375-383
    • /
    • 2021
  • We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.

Application of a deep learning algorithm to Compton imaging of radioactive point sources with a single planar CdTe pixelated detector

  • Daniel, G.;Gutierrez, Y.;Limousin, O.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1747-1753
    • /
    • 2022
  • Compton imaging is the main method for locating radioactive hot spots emitting high-energy gamma-ray photons. In particular, this imaging method is crucial when the photon energy is too high for coded-mask aperture imaging methods to be effective or when a large field of view is required. Reconstruction of the photon source requires advanced Compton event processing algorithms to determine the exact position of the source. In this study, we introduce a novel method based on a Deep Learning algorithm with a Convolutional Neural Network (CNN) to perform Compton imaging. This algorithm is trained on simulated data and tested on real data acquired with Caliste, a single planar CdTe pixelated detector. We show that performance in terms of source location accuracy is equivalent to state-of-the-art algorithms, while computation time is significantly reduced and sensitivity is improved by a factor of ~5 in the Caliste configuration.

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Operating Characteristics of a Time-Correlated Single Photon Counting System and its Application to Fluorescence Life Time Measurements (시간 상관 단일 광자 계수기의 동작 특성과 형광 수명 시간 측정에의 응용)

  • Ko, D.S.;Jung, H.S.;Kim, U.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.512-514
    • /
    • 1989
  • A time-correlated single photon counting system combined with a mode locked $Ar^+$ laser has been utilized to measure the fluorescence decay. A side-on type photomultiplier tube has been used as a photon detector. By restricting the sensitive area and the position of the photocathode, the transit time differencies of photoelectrons in PMT has been reduced. The fluorescence life time of rhodamin 6G in ethylene glycol measured 3.9$\pm$10 ns.

  • PDF

Correction of Single Photon Emission CT Image Distorted by Collimator Characteristic (시준기의 특성으로 인한 SPECT 왜곡 화상의 보정)

  • 백승권
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • SPECT technology is used for the reconstructed image in the field of industry noncontact measurement system. One of the distortion problems in reconstructed image quality is a collimator characterictic. The image distortion is caused by a geometrical structure of the collimator. This paper indicated a correction method to remove the image distortion by the structure of the collimator, and compared with the existing correction method. The correction. method removed the image distortion to use deconvolution of projection data with the shift-variant blurring function in the frequency domain. In this pater, I simulated with the collimator angle and distance between the detector and the center of object. and verified with expeimental data. The validity and limitation of correction method is studied for actual industrial applications.

  • PDF

Radioligands for Imaging Dopamine and Serotonin Receptors and Transporters (도파민과 세로토닌 운반체 및 수용체 영상을 위한 방사성리간드)

  • Chi, Dae-Yoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.3
    • /
    • pp.159-168
    • /
    • 2000
  • In the 1980s, techniques to image the human subjects in a three-dimensional direction were developed. Two major techniques are SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) which allow the detector to detect a single photon or annihilation photons emitted from the subjects injected with radiopharmaceuticals. Since the latter two techniques can measure the density of receptors, enzymes and transporters in living human, it may be very important project to develop selective methods of labeling with radionuclides and to develop new radiopharmaceuticals. There has been a considerable interest in developing new compounds which specifically bind to dopamine and serotonin receptor and transporters, and it will be thus very useful to label those compounds with radionuclides in order to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the characteristics of radioligands for the imaging of dopamine and serotonin receptors and transporters. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.

  • PDF

Construction and Performance Characterization of Time-correlated Single Photon Counting System having Picosecond Resolution (피코초 분해능의 시간 상관 단광자 계수 장치 구성 및 동작 특성)

  • 이민영;김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.90-99
    • /
    • 1994
  • Picosecond time-correlated single photon counting system and time-resolved luminescence spectrometer were constructed, employing a mode-locked picosecond laser, fast electronics, and microchannel plate tube. It has been shown that the instrument response function critically depends on laser pulse shape, timing jitter and walk of the electronics, and characteristics of detector and amplifier. Correcting time dispersion in the optical system, the best instrument response function obtained appears to be 25 ps, which made it possible to measure the luminescence lifetime with less than 10 ps resolution in the picosecond to microsecond range. range.

  • PDF

A Design of the Thickness Gauge Using the Compton Gamma-ray Backscattering

  • B.S. Moon;Kim, Y.K.;Kim, J.Y.;Kim, J.T.;C.E. Chung;S.B. Hong
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.457-464
    • /
    • 2000
  • In this paper, we describe the results of various calculations performed for a design of the thickness gauges that use the gamma-ray backscattering method. The radiation source is assumed to be the $_{24}$1Am(60keV gamma-ray) and the detector is a single crystal scintillator in a cylindrical form. The source is located at the center of the detector with the collimator of a cylindrical shape. First, when gamma-rays are incident on a material with a constant angle, we compute the variations of the spectrum for the photons scattered into different angular intervals. Next, we compute for an optimal size for the collimator cylinder for a fixed detector size and an optimal distance from the detector to the material. Finally, we compute the number of observed photons for different thickness of two different materials, a plastic film and an Al foil.

  • PDF

A Study on the Optimal Design for the reconstruction Filter in Single Photon Emission Computed Tomography (SPECT) (단일광자방출 전산화 단층촬영상에서 재구성 필터의 최적설계에 관한 연구)

  • 김정희;김광익
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 1997
  • This paper presents an optimal design for the SPECT reconstruction filter, based on a physical limit of SPECT lesion detection capability. To increase the performance of the filter on lesion detectability, the filter design was focused on increasing the local SyW ratio of a threshold lesion, that was determined by minimum detectable lesion size (MDU) from SPECT lesion detectabllity contrast-detail curve. The proposed filter showed flexible window characteristics of resolution recovery and noise smoothing for MDLSs in the resolution-limited and photon-limited regions, respectively, compennting for the relative impact of the main limitation factors on threshold detectability. The simulated results showed good adaptability of the proposed filter to the changes in physical parameters of photon counts, object contrast, and detector system resolution.

  • PDF

Feasibility study of SiPM based scintillation detector for dual-energy X-ray absorptiometry

  • Park, Chanwoo;Song, Hankyeol;Joung, Jinhun;Kim, Yongkwon;Kim, Kyu Bom;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2346-2352
    • /
    • 2020
  • Dual-energy x-ray absorptiometry (DXA) is the noninvasive method to diagnose osteoporosis disease characterized by low bone mass and deterioration of bone tissue. Many global companies and research groups have developed the various DXA detectors using a direct photon-counting detector such as a cadmium zinc telluride (CZT) sensor. However, this approach using CZT sensor has some drawback such as the limitation of scalability by high cost and the loss of efficiency due to the requirement of a thin detector. In this study, a SiPM based DXA system was developed and its performance evaluated experimentally. The DXA detector was composed of a SiPM sensor coupled with a single LYSO scintillation crystal (3 × 3 × 2 ㎣). The prototype DXA detector was mounted on the dedicated front-end circuit consisting of a voltage-sensitive preamplifier, pulse shaping amplifier and constant fraction discriminator (CFD) circuit. The SiPM based DXA detector showed the 34% (at 59 keV) energy resolution with good BMD accuracy. The proposed SiPM based DXA detector showed the performance comparable to the conventional DXA detector based on CZT.