• 제목/요약/키워드: Single nozzle

검색결과 250건 처리시간 0.025초

Full Cone Type 스월노즐에서 단일분무와 이중분무의 중첩영역에 대한 충격력 평가 (Evaluation of the Impact Force on the Single Spray and Overlap Region of Twin Spray in Full Cone Type Swirl Nozzle)

  • 김태현;성연모;정흥철;김덕줄;최경민
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.27-36
    • /
    • 2011
  • The impact force on the single and overlap region of twin spray was experimentally evaluated using visualization method in full cone type swirl nozzle spray. Visualization of spray was conducted to obtain the spray angle and breakup process. The photography/imaging technique, based on Particle Image Velocimetry (PIV) using high-speed camera, was adopted for the direct observation of droplet motion and axial velocity measurement, respectively. Droplet size was measured by Particle Motion Analyze System (PMAS). The purpose of this study is to provide fundamental information of spray characteristics, such as impact force, for higher etching factor in the practical wet etching system. It was found that the spray angle, axial velocity and impact force were increased with increasing the nozzle pressure while droplet size decreased with increasing the nozzle pressure. Droplet size increased as the distance from nozzle tip was decreased. The impact force of twin spray in the overlap region was about 63.29, 67.02, 52.41% higher than that of single spray at 40, 50 and 60 mm of nozzle pitch, respectively. Also, the nozzle pitch was one of the important factors in the twin spray characteristics.

이중제트에서 노즐과 노즐사이의 각도 변화에 따른 유동 특성 (The Flow Characteristics with Variation of Nozzle-to-nozzle Angles on Unventilated Dual Jests)

  • 김동건;김문경;윤순현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1231-1239
    • /
    • 2008
  • The characteristics of flow on unventilated dual jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. All measurements were made over a range of nozzle-to-nozzle angles from $0^{\circ}$ to $25^{\circ}$. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. It was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. As nozzle-to-nozzle inclined angles were decreased, it was found that the spanwise turbulent intensity is greater than the streamwise turbulent intensity in the merging region. In the combined region, the velocity of dual jets agree well with that of single jet, but the turbulence intensity of dual jets not agree with that of single jet.

H class급 가스터빈의 단일 노즐 성능에 대한 CONVERGE CFD 기반 수치 해석적 연구 (Numerical study on single nozzle performances for H class gas turbine based on CONVERGE CFD)

  • 김종현;박정수
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.67-72
    • /
    • 2019
  • In this study, we investigate the non-reacting and reacting performance of single nozzle for post H class gas turbine by using commercial CFD tool, CONVERGE, based on adaptive mesh refinement. By varying swirl number and mixing length of base nozzle design. Through the numerical analysis, basic phenomena can be well described with respect to fuel concentration for non-reacting flow, temperature distribution, velocity vector and combustion outlet temperature distribution for reacting flow. However, there are rooms for improvements in model accuracy by comparing test results. Comparison between numerical analysis are planning for further study.

상호작용하는 부상화염의 특성에 관한 연구 (Characteristics of Interacting Lifted Flames)

  • 이승;이병준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.1-8
    • /
    • 2000
  • The effects of nozzle arrangements, nozzle distances and fuel flowrates on the flame stabilities such as flame length, liftoff height and blowout characteristics are investigated experimentally. Three nozzle arrangements - diamond 4 nozzle, linear 5 nozzle, cross 5 nozzle- are used. Flame interactions result in the increase of the blowout flowrates and constant turbulent liftoff heights. The flames separated about 10 nozzle diameters are sustained as nozzle attached flames to the higher fuel flowrates than the other separation cases. Normally flames are extinguished at the lifted states. Blowout flowrates are affected by the nozzle configuration, nozzle seperation distance. Blowout flowrates for the diamond- or cross- shaped nozzle arrangements are parabolic function of nozzle distances. Maximum blowout flowrates for the 5 nozzle configuration case except linear one is about 2.9 times that of single equivalent nozzle case. Turbulent liftoff heights are not function of flowrates for the interacting flames.

  • PDF

소규모영농에 적합한 가축분뇨액비살비살포기 개발 (Development of Animal Liquid Manure Field Spreader Suited to Small Scale Crop Production Farms)

  • 최광재;오권영;유병기;이성현
    • 한국축산시설환경학회지
    • /
    • 제12권3호
    • /
    • pp.151-160
    • /
    • 2006
  • For even distribution of liquid manure in the field, a boom nozzle type spreader was designed and studied to determined its suitability for small scale crop production farms. Boom nozzle type spreader was compared in the impact triple nozzle and impact single nozzle type spreader. Spreading uniformity of the boom nozzle type liquid manure spreader showed 5.2% (C.V.) and impact single nozzle type spreader showed 6.9% (C.V.). The spreading uniformity of the impact triple nozzle type spreader was quite uneven, therefore, the spreader could be modified as twin nozzle for spreading in orchard farm. The wheel axle height adjustable type liquid manure spreader has higher the stability and it considered much useful on the hilly agricultural land.

  • PDF

상호작용하는 부상화염의 특성에 관한 연구 (Characteristics of Interacting Lifted Flames)

  • 이승;이병준
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.461-466
    • /
    • 2001
  • The characteristics of nonpremixed interacting flames are investigated in the parameter of nozzle configuration and nozzle separation distane, s. Three nozzle arrangements - diamond 4 nozzle, linear 5 nozzle and cross 5 nozzle- are used. When s is about 10 nozzle diameter, flames lift from the nozzle at the highest fuel flowrate compared with the other s cases. Normally flames are extinguished at the lifted states. Flowrates when blowout occurs are affected by the nozzle configuration, nozzle seperation distance. Blowout flowrates for the diamond- or cross-shaped nozzle cases are parabolic function of s. For 5 cross nozzle case, flames extinguished at 3.3 times higher flowrate than that of single equivalent area nozzle. Turbulent liftoff heights are not function of flowrates for these cases.

다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향 (Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle)

  • 서현규;김지원;이창식
    • 한국분무공학회지
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (1) 분사 및 거시적 분무특성 비교 (Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (1) Comparison of Injection and Macroscopic Spray Characteristics)

  • 박정현;노승천;상몽소;박수한
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to compare the injection and spray characteristics of single-hole GDI injectors using injection rate and mie-scattering spray images. Five types of single-hole injectors with different nozzle hole diameters were used, and the spray rate, spray tip penetration, spray area, and spray width were analyzed. As a result, the diameter of the nozzle hole had a direct effect on the injection and spray characteristics. It was confirmed that the larger the diameter of the nozzle hole, the higher the injection quantity, the spray tip penetration, the spray area, and the spray width. In addition, it was confirmed that the near-field spray, which has little influence of ambient air, has a great correlation with the injection rate.

다수 난류 비예혼합 화염의 상호작용에 관한 연구 (The Stability of Turbulent Interacting Flames)

  • 김진선;이병준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.453-458
    • /
    • 2001
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes which depend on the existence of the center nozzles. Six nozzle arrangements which are cross 4, 5, 8, 9, square 8 and circular 8 nozzles are used for the experiment. Those are arranged to see the effect of the center nozzle out of multi-nozzle. There are many parameters that affect flame stability in multi-nozzle flame such as nozzle separation distance, fuel flowrates and nozzle configuration, but the most important factor is the existence of nozzles in the center area from the nozzle arrangement. As the number of nozzle in the area is reduced, more air can be entrained into the center of flame base and then tag flame is formed. In the case of circular 8 nozzles, blowout flowrates are above 5.4 times compared with that of single equivalent area nozzle.

  • PDF