• Title/Summary/Keyword: Single dose toxicity assessment

Search Result 20, Processing Time 0.022 seconds

Single oral toxicity test and safety classification for Kaempferia parviflora (흑생강의 단회투여독성시험과 안전성등급화)

  • Han, Young-Hoon;Park, Yeong-Chul
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.53-58
    • /
    • 2018
  • Objectives : Kaempferia parviflora Rhizome is black ginger indigenous to Laos and Thailand. It has been used as a folk medicine to improve blood flow and promote vitality and longevity with good health and well being. For these reasons, Kaempferia parviflora Rhizome has been focused on developing it as a food or food supplement. In addition, Kaempferia parviflora Rhizome could be under consideration of new prescription based on its characteristic compounds, polymethoxyflavonoids. However, it needs to be certified as safe before it can be used. Here, a single-oral toxicity test and safety classification was carried out to identity acute information of the toxicity of Kaempferia parviflora Rhizome powder and to make sure of its safety in clinical applications. Methods : Test substance was orally administered to male and female SD-rat at dose levels of 5000 mg/kg to estimate approximate lethal dose(ALD). Based on the acute information of the toxicity, the safety classification was estimated using the HED(human equivalent dose)-based MOS(margin of safety). Results : At 14 days after treatment with test substance. there were no of test substance related with mortalities and clinical signs. In addition, no changes in the body or organ weights and no gross or histopathological findings were observed. Thus, the ALD of Kaempferia parviflora Rhizome powder was considered over 5,000 mg/kg in both female and male mice. Conclusions : Based on the single oral toxicity test using the highest and limit dose, 5,000 mg/kg and the decision guideline for safety classification based on HED-based MOS, it was estimated that Kaempferia parviflora Rhizome powder is classified as "Specified class B" indicating that clinical dose is not limited to patients as safe as food.

Acute toxicity test and safety classification for Termitomyces albuminosus containing pharmacologically similar ingredient of Aconitum koreanum (백부자-대체 가능 한약재의 계종버섯에 대한 급성독성시험과 안전성등급화)

  • An, Minji;Park, Yeongchul
    • The Korea Journal of Herbology
    • /
    • v.32 no.4
    • /
    • pp.33-38
    • /
    • 2017
  • Objectives : Termitomyces albuminosus (Berk.) Heim is one of the famous wild edible mushrooms in the southern part of China. It is known that Termitomyces albuminosus, like Aconitum koreanum used in Korean traditional medicine, contains a kind of cerebroside, termitomycesphin, causing a pharmacologic effect on the neuron system. The pharmacologic effect of Termitomyces albuminosus can be used to possibly replace Aconitum koreanum. However, It needs to be certified as safe before it can be used. Here, a single-oral toxicity test and safety classification was conducted to obtain acute information of the toxicity of dried-Termitomyces albuminosus powder and to secure its safety in clinical applications. Methods : In order to calculate approximate lethal dose(ALD), test substance was orally administered to male and female SD-rat at dose levels of 5,000 and 0 (vehicle control) mg/kg (body weight). Based on the result of this toxicity, also the estimation of safety classification was calculated using the HED-based (human equivalent dose) MOS (margin of safety). Results : There were no mortalities, test substances treatment-related clinical signs, no changes in the body or organ weights, and no gross or histopathological findings at 14 days after treatment with test substance. Thus, the approximate lethal dose of dried-Termitomyces albuminosus powder was considered over 5,000 mg/kg in both female and male mice. Conclusions : Based on the limit dose, 5000 mg/kg, it was estimated that dried-Termitomyces albuminosus powder is classified as "Specified class B" indicating that clinical dose is not limited to patients as safe as food.

A Study on the β-glucan, Ginsenoside Content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) Free Radical Scavenging Activity and Single Dose Toxicity Assessment of Modified Kyungohkgo (경옥고가미방의 베타글루칸, 진세노사이드 함량, 2,2-diphenyl-1-picrylhydrazyl (DPPH) Free Radical 소거 활성 및 단회 투여 독성 연구)

  • Lee, Yu-Mi;Moon, Yang-Seon;Park, Hee-Myeong;Kim, Heyong-Seok;Ro, Woong-Bin;Na, Chang-Su
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.95-108
    • /
    • 2021
  • Objectives This study was conducted to investigate the beta-glucan, ginsenoside content, antioxidant activity and safety of modified Kyungohkgo added to Sparassis crispa and Hericium erinaceum. Methods The marker compounds contents, antioxidant activity and safety of modified Kyungohkgo were tested. The contents of beta-glucan and ginsenoside Rb1, Rg1, and Rg3 marker compounds were measured, the antioxidant activity was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and a safety test was conducted via single dose toxicity assessment. Results Analyzing the contents of marker compounds showed 351.75 mg/g of beta-glucan, 0.0327 mg/g of ginsenoside Rb1 and 0.0802 mg/g of ginsenosai Rg3. In the DPPH free radical scavenging activity, the inhibition concentration 50% of modified Kyungohkgo was 0.2880%. The scavenging activity of modified Kyungohkgo was 5.49% activity at 0.05% concentration, 89.66% activity at 0.5% concentration, 94.68% activity at 1% concentration, and 96.06% activity at 5% concentration. In the single dose toxicity test of modified Kyungohkgo, a dose of 2,000 mg/kg B.W. was set at its highest capacity and observed after oral administration to female and male rats. No toxicological findings were recognized. It was observed that the resulting lethal dose can be set to 2,000 mg/kg B.W. or higher for both females and males. Conclusions The results of the experiment on modified Kyungohkgo showed that the marker compounds contents were beta-glucan and ginsenoside Rb1 and Rg3, that antioxidant activity was observed through the DPPH free radical scavenging activity, and safety was confirmed through the single dose toxicity assessment.

Safety of a Traditional Korean Medicine, Cheonggan extracts (CGX): A 2-week Single-dose Toxicity Study in SD Rats and Beagle Dogs

  • Shin, Jang-Woo;Cho, Jung-Hyo;Seo, Dong-Seok;Sung, Nak-Won;Kwon, Min;Son, Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.27-34
    • /
    • 2009
  • Objectives: To evaluate the acute toxic effects and approximate lethal dose of Cheonggan extracts (CGX) in SD rats and beagle dogs. Methods: Male and female rats were divided into 4 groups (Control, CGX 1250, CGX 2500, CGX 5000) respectively and male and female dogs were divided into two groups respectively (Control, CGX 5000) respectively. A single oral dose of CGX was treated to the rats and dogs. Mortality, signs of gross toxicity, and behavioral changes were observed over 14 days. All animals were observed every hour for 4 hours after administration and once a day thereafter for 14 days. Body weights were determined at $0_{th}$, $7_{th}$, and $14_{th}$ days. All surviving animals were sacrificed and necrotized. Major organs were inspected visually for gross findings. Results: No animals died in any of the groups during the experimental period (2 weeks), rats or dogs. Body weights of rats and dogs during the experiment continuously increased in all groups but there was no significant change. No abnormal clinical signs were observed for 2 weeks after a single administration of CGX in any dose group of CGX, rats or dogs. No abnormal findings in major organs were observed in any group of rats or dogs. Conclusion: CGX does not have acute toxic effects in rats or dogs. Therefore, an approximate lethal dose is assumed to exceed 5000 mg/kg in both rats and dogs.

  • PDF

Single Dose Oral Toxicity and Genotoxicological Safety Study of Ssanghwa-tang Fermented with Lactobacillus acidophyllus (유산균 발효 쌍화탕에 대한 단회 투여 경구 독성 및 유전 독성 연구)

  • Chung, Tae-Ho;Shim, Ki-Shuk;Kim, Dong-Seon;Lee, Jae-Hoon;Ma, Jin-Yeul
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.67-83
    • /
    • 2011
  • Objectives: The purpose of this study was to examine the single dose toxicity with oral administration and genotoxicities of Ssanghwa-tang fermented with Lactobacillus acidophyllus. Materials and Methods: Clinical signs, weight changes, lethal doses$(LD_{50})$, and postmortem evaluation were determined by Globally Harmonized Classification System(GHCS) in a single-dose oral toxicity study. In vitro mammalian chromosomal aberration test was conducted with Ames test by cell proliferation suppression assessment using the cultivated CHO-K1(Chinese hamster ovary fibroblast) origins. Bacterial reversion assay was performed using Salmonella typhimurium (TA98, TA100, TA1535, and TA1537) and Escherichia coli (WP2uvrA). In vivo micronucleus test was performed using ICR mouse bone marrow. Results: No clinical sign was observed and none of the groups with doses up to 2000 mg/kg showed significant acute oral toxicity in the single dose oral administration. None of the sample doses taken during the 6 to 18 hour groups showed significant aberrant metaphases comparing to the negative control group in the in vitro mammalian chromosomal aberration test. No evidence of mutagenicity was seen for Escherichia coli (WP2uvrA) or Salmonella typhimurium (TA98, TA100, TA1535, and TA1537). No significant increase in the frequency of micronuclei was seen in the micronucleus test. Conclusion: These results indicate that the $LD_{50}$ value of Ssanghwa-Tang fermented with Lactobacillus acidophyllus may be over 2000 mg/kg and it have no acute oral toxicity and genotoxicity.

Single-dose oral toxicity study of genetically modified silkworm expressing EGFP protein in ICR mouse

  • Jang, Kyung-Min;Kim, Sung-Gun;Park, Ji-Young;Choi, Won-Ho;Lee, Jae-Woo;Jegal, Hyeon-Young;Kweon, Soon-Jong;Choi, Kwang-Ho;Park, Jung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.109-115
    • /
    • 2016
  • Silk has had a reputation as a luxurious and sensuous fabric but it is not popular due to the expensive price and poor durability. To develop the silk materials that apply the various industries, the artificially synthesized gene can be introduced into the silkworm and expressed in the silk gland. Transgenic silkworms for the mass production of green fluorescent silks are generated using a fibroin H-chain expression system. For commercial use, safety assessment of the transgenic silkworms is essential. The purpose of this study was to examine the potential acute oral toxicity of EGFP protein expressed in genetically modified (GM) fluorescence silkworm and to obtain the approximative lethal dose in the male and female at 6-weeks ICR mice. EGFP protein was fed at a dose of 2,000 mg/kg body weight in five male or five female mice. Mortalities, clinical findings and body weight changes were monitored for 1, 3, 7, 14 days after dosing. At the end of 14 day observation period, all mice were sacrificed, and the postmortem necropsy were performed. The test group was not observed death case. Also the effect was not admitted by test substance administration in common symptoms, the body weight and postmortem. The results of single-dose oral toxicity test showed that approximative lethal dose of EGFP protein expressed in fluorescence silkworm was considered to exceed the 2,000 mg/kg body weight in both sexes.

Assessment of the Single Oral dose Toxicity of Glycyrrhiza New Variety Extract in Sprague-Dawley Rats (Sprague-Dawley rats에서 감초 신품종 추출물의 단회투여 독성 평가)

  • Dong-Gu Kim;Jeonghoon Lee;Wonnam Kim;yo-Jin An;Jong-Hyun Lee;Jaeki Chang;Sa-Haeng Kang;Young-Jae Song;Yong-Deok Jeon;Jong-Sik Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.65-66
    • /
    • 2021
  • Glycyrrhiza species (Licorice) are one of the most commonly used medicinal plants in Asian countries such as China, India and Korea. It has been traditionally used to treat many disease including cough, cold, asthma, fatigue, gastritis and respiratory tract infections. Glycyrrhiza new variety, Wongam (WG), have been developed by Korea Rural Development Administration and revealed several pharmacological effects. However, limited data are available on the potential adverse effects of the WG. Here, we evaluated the general toxicity of the WG extract through single oral dose toxicity study in Sprague-Dawley rats. After single oral dose administration, there was no mortality up to 5000 mg/kg during experiment period. In addition, there was no clinical signs including body weight change, gross findings and necropsy findings up to 5000 mg/kg during experiment period. To conclude, the no-observed-adverse-effect level (NOAEL) of WG was higher than 5000 mg/kg and no target organs were identified in male and female Sprague-Dawley rats.

  • PDF

Study on Single-dose Intramuscular Toxicity of Shinbaro Pharmacopuncture in Sprague-Dawley (SD) Rats and Beagle Dogs (신바로 약침의 SD 랫드와 비글견에 대한 단회 근육투여 독성시험)

  • Lee, Jin-Ho;Chung, Hwa-Jin;Lee, In-Hee;Lee, Jae-Woong;Kim, Eun-Jee;Kim, Min-Jeong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • Objectives To evaluate Shinbaro Pharmacopuncture safety through analysis of potential single-dose intramuscular toxicity of Sinbaro Pharmacopucture in SD rats and Beagle dogs. Methods Single-dose intramuscular toxicity of Shinbaro Pharmacopuncture was assessed in accordance with Korea Food and Drug Administration Guidelines for toxicity testing of Medicinal Products. The SD rats were treated intramuscularly with Shinbaro Pharmacopuncture at doses of 0, 4.6, 9.2, and 18.5 mg/kg, respectively. The Beagle dogs were treated intramuscularly with Shinbaro Pharmacopuncture at doses of 2.3, and 4.6 mg/kg, respectively, and after 3 days, the procedure was repeated a second time at doses of 0.6, and 1.2 mg/kg, respectively, for toxicity testing. Mortality, change in body weight, and necropsy findings were examined for the study period. Results There were no mortalities, general symptoms, or body weight changes in the SD rats. While pyelectasis of the left kidney was observed in a male rat in the 4.6 mg/kg administration group, natural occurrence is common, and does not appear to be related with the test substance. No mortalities were observed in the Beagle dogs. In assessment of general symptoms, a female dog in the 9.2 mg/kg group displayed body weight decrease due to leftover food, but the change in body weight was within the normal range seen at 6~7 months, and the necropsy findings were not significant. The toxicity of the test substance appears to be minimal. Conclusions The results suggest that the lethal dose 50 ($LD_{50}$) and approximate lethaldose (ALD) value in single intramuscular administration of Shinbaro Pharmacopuncture in SD rats and Beagle dogs are higher than 18.5 mg/kg.

Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems

  • Chatterjee, Nivedita;Yang, Ji Su;Park, Kwangsik;Oh, Seung Min;Park, Jeonggue;Choi, Jinhee
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.7.1-7.7
    • /
    • 2015
  • Objectives The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nanano-materials (GFNs) in alternative in vitro and in vivo toxicity testing models. Methods The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [$NH_2$]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. Results In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine > $NH_2$ > COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. Conclusions The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.

Hepatotoxicity Assessment of Derived Product from Pyrolysis System for Waste Plastic Recycling (폐플라스틱 재활용을 위한 열분해공정 파생물질의 간독성 평가)

  • Shin Hea Soon
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • Recently, waste plastic recycling technology is transforming from Incineration system to pyrolysis gasification system which can derive the resources from environmental waste and charge no more environmental burden to nature. The present study was carried out to investigate the potential acute toxicity of derived product of pyrolysis gasifications system for recycling of waste plastic by a single oral dose in Sprague-Dawley Rats. In order to evaluate the hepatotoxic effects of derived product of pyrolysis gasification system, activities of serum transaminase were measured in rats. No related changes in survivals, clinical signs and the ratio of the liver to body weights of rats were monitored. The results showed that the single oral administration of material of pyrolysis system for recycling of waste plastic did not induce any toxic effect at orally single dose level of 0 and 100, 200, 400, 800mg/kg body weight in rats. We could not find out any significant tocxicity induced by single oral administrate of material of pyrolysis system for recycling of waste plastic.