• 제목/요약/키워드: Single crystalline

검색결과 679건 처리시간 0.028초

Visible Light Driven ZnFe2Ta2O9 Catalyzed Decomposition of H2S for Solar Hydrogen Production

  • Subramanian, Esakkiappan;Baeg, Jin-Ook;Kale, Bharat B.;Lee, Sang-Mi;Moon, Sang-Jin;Kong, Ki-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2089-2092
    • /
    • 2007
  • Tantalum-containing metal oxides, well known for their efficiency in water splitting and H2 production, have never been used in visible light driven photodecomposition of H2S and H2 production. The present work is an attempt in this direction and investigates their efficiency. A mixed metal oxide, ZnFe2Ta2O9, with the inclusion of Fe2O3 to impart color, was prepared by the conventional ceramic route in single- and double-calcinations (represented as ZnFe2Ta2O9-SC and ZnFe2Ta2O9-DC respectively). The XRD characterization shows that both have identical patterns and reveals tetragonal structure to a major extent and a minor contribution of orthorhombic crystalline system. The UV-visible diffuse reflection spectra demonstrate the intense, coherent and wide absorption of visible light by both the catalysts, with absorption edge at 650 nm, giving rise to a band gap of 1.9 eV. Between the two catalysts, however, ZnFe2Ta2O9-DC has greater absorption in almost the entire wavelength region, which accounts for its strong brown coloration than ZnFe2Ta2O9-SC when viewed by the naked eye. In photocatalysis, both catalysts decompose H2S under visible light irradiation (λ ≥ 420 nm) and produce solar H2 at a much higher rate than previously reported catalysts. Nevertheless, ZnFe2Ta2O9-DC distinguishes itself from ZnFe2Ta2O9-SC by exhibiting a higher efficiency because of its greater light absorption. Altogether, the tantalum-containing mixed metal oxide proves its efficient catalytic role in H2S decomposition and H2 production process also.

CoFe2O4 Films Grown on (100) MgO Substrates by a rf Magnetron Sputtering Method ((100) MgO 기판에 성장한 CoFe2O4 박막의 물리적 및 자기적 특성에 관한 연구)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • 제16권2호
    • /
    • pp.140-143
    • /
    • 2006
  • Single crystalline $CoFe_2O_4$ thin films on (100) MgO substrates were fabricated using a rf magnetron sputtering method. The deposited films were investigated for their crystallization by X-ray diffraction, Rutherford back-scattering spectroscopy and field emission scanning electron microscopy. When a cobalt ferrite film was deposited at the substrate temperature of $600^{\circ}C$, squared grains of about 200 nm were uniformly distributed in the film. However, the grains became irregular and their sizes also varied from 30 to 150 nm when the substrate temperature was $700^{\circ}C$. Hysteresis loops of a film deposited at $600^{\circ}C$ showed that the magnetically easy axis of the film was perpendicular to the substrate surface. Except for the squareness ratio, magnetic properties of the cobalt ferrite films grown by the present rf sputtering method were as good as those of the films prepared by a laser ablation method: The in-plane and perpendicular coercivities were 283 and 6800 Oe, respectively. As the thickness of the deposited film increased twice, the saturation magnetization became double but the coercivity remained unchanged. However, deposition of the Co ferrite films with a higher rf powder decreased the squareness ratio and the perpendicular coercivity of the films.

Magenetic Properties of Nd-Fe-B-Co-based Melt-spun Ribbons an dTheir Bonded Magents (Nd-Fe-B-Co계 급냉리본과 Bond 자석의 자기적 성질)

  • Gang, Gye-Myeong;Gang, Gi-Won;O, Yeong-Min;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • 제3권2호
    • /
    • pp.175-184
    • /
    • 1993
  • Abstract Co-and/or AI-added Nd-Fe-B-based magnetic alloys were fabricated by using vacuum induction melting frunace, and melt-spun ribbons were made of the magnetic alloys with single roll rapid quenching method. The variation of magnetic properties of the melt-spun ribbons as a function of Cuwheel velocity (Vs) were investigated. Bonded magnets were made of the optimally quenched ribbon fragments, and the magnetic properties of the melt-spun ribbons and the bonded magnets were studied, relating to the microstructure and crystalline structure. Cu-wheel surface velocity had a strong effect on the magnetic properties of the melt-spun ribbons, and the maximum properties were obtained around Vs =20m/sec. The optimally quenched ribbon had a cellura-type microstructure, in which fine N$d_2$F$e_14$B grains were surrounded by thin Nd-rich phase. In case of a 2.1at% AI-added melt-spun ribbon, the magnetic properties were as follows: iHc, Br, and (BH)max were 15.5KOe, 7.8KG and 8.5MGOe respectively. And resin bonded magnets were fabricated by mixing optimally quenched ribbon fragments with 2.5wt % polyamide resin, compacting and binding at room temperature. The iHc, Br and (BH)max of bonded magnet were lO.2KOe, 4.4KG and 3.3MGOe respectively. And hot-pressed magnets were made by pressing the overquenched ribbons at high temperature. The magnetic properties of hot-pressed magnets were better than those of bonded magnets, and when the holding time was 8 minutes, the iHc, Br, and (BH)max of the hot-pressed magnet were 1O.8KOe, 7.3KG and 8.0MGOe respectively. Domain structure was mainly maze pattern, which means that the easy magnetization axis could be aligned, and the domain width of the hot-pressed magnets was smaller than that of bonded magnets.

  • PDF

Studies on Physicochemical Properties of Starches from Sweet Potatoes of Korea Cultivars (한국산(韓國産) 고구마 전분의 이화학적 특성에 관한 연구)

  • Shin, Mal-Shick;Ahn, Seung-Yo
    • Applied Biological Chemistry
    • /
    • 제26권2호
    • /
    • pp.137-142
    • /
    • 1983
  • Starch granules of sweet potatoes, the Suwon 147 and the Chunmi were observed by photomicroscope and scanning electron microscope were round and polygonal. Granule sizes of the Suwon 147 and the Chunmi were $14{\sim}30{\mu}m,\;16{\sim}34{\mu}m$, respectively. X-ray diffraction pattern of starch granules resulted weak crystallinity at $2{\theta}$ 14.8, 17.2, 22.5. Starch granules were of the Ca crystalline type. The blue values of the Suwon 147 and the Chunmi were determined to be 0.342 and 0.279, amylose contents 27.6% and 23.6%, and water binding capacity 178.7% and 185.5%. Swelling of the starches negligible until $50^{\circ}C$ thereafter it increased rapidly. Swelling power of the Suwon 147 was more slightly than that of the Chunmi. Optical transmittance of 0.2% starch suspensions was increased rapidly from $65^{\circ}C$ and the gelatinization at $65{\sim}80^{\circ}C$ was of sing1e stage. Amylogram patterns of 4% starch solutions were similar to no peak viscosity. Viscosity of the Suwon 147 was increased, but that of the Chunmi was decreased at $92.5^{\circ}C$.

  • PDF

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

In-situ Observations of Gas Phase Dynamics During Graphene Growth Using Solid-State Carbon Sources

  • Kwon, Tae-Yang;Kwak, Jinsung;Chu, Jae Hwan;Choi, Jae-Kyung;Lee, Mi-Sun;Kim, Sung Youb;Shin, Hyung-Joon;Park, Kibog;Park, Jang-Ung;Kwon, Soon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.131-131
    • /
    • 2013
  • A single-layer graphene has been uniformly grown on a Cu surface at elevated temperatures by thermally processing a poly(methyl methacrylate) (PMMA) film in a rapid thermal annealing (RTA) system under vacuum. The detailed chemistry of the transition from solid-state carbon to graphene on the catalytic Cu surface was investigated by performing in-situ residual gas analysis while PMMA/Cu-foil samples being heated, in conjunction with interrupted growth studies to reconstruct ex-situ the heating process. The data clearly show that the formation of graphene occurs with hydrocarbon molecules vaporized from PMMA, such as methane and/or methyl radicals, as precursors rather than by the direct graphitization of solid-state carbon. We also found that the temperature for vaporizing hydrocarbon molecules from PMMA and the length of time the gaseous hydrocarbon atmosphere is maintained, which are dependent on both the heating temperature profile and the amount of a solid carbon feedstock are the dominant factors to determine the crystalline quality of the resulting graphene film. Under optimal growth conditions, the PMMA-derived graphene was found to have a carrier (hole) mobility as high as ~2,700 cm2V-1s-1 at room temperature, superior to common graphene converted from solid carbon.

  • PDF

Synthesis and Conductive Properties of Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5) by Sol-Gel Method (Sol-Gel법에 의한 Li1+xAlxTi2-x(PO4)3 (x = 0, 0.3, 0.5)의 합성 및 전도특성)

  • Moon, Jung-In;Cho, Hong-Chan;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • 제22권7호
    • /
    • pp.346-351
    • /
    • 2012
  • $Li_{1+x}Al_xTi_{2-x}(PO_4)_3$(LATP) is a promising solid electrolyte for all-solid-state Li ion batteries. In this study, LATP is prepared through a sol-gel method using relatively the inexpensive reagents $TiCl_4$. The thermal behavior, structural characteristics, fractured surface morphology, ion conductivity, and activation energy of the LATP sintered bodies are investigated by TG-DTA, X-ray diffraction, FE-SEM, and by an impedance method. A gelation powder was calcined at $500^{\circ}C$. A single crystalline phase of the $LiTi_2(PO_4)_3$(LTP) system was obtained at a calcination temperature above $650^{\circ}C$. The obtained powder was pelletized and sintered at $900^{\circ}C$ and $1000^{\circ}C$. The LTP sintered at $900{\sim}1000^{\circ}C$ for 6 h had a relatively low apparent density of 75~80%. The LATP(x = 0.3) pellet sintered at $900^{\circ}C$ for 6 h was denser than those sintered under other conditions and showed the highest ion conductivity of $4.50{\times}10^{-5}$ S/cm at room temperature. However, the ion conductivity of LATP (x = 0.3) sintered at $1000^{\circ}C$ decreased to $1.81{\times}10^{-5}$ S/cm, leading to Li volatilization and abnormal grain growth. For LATP sintered at $900^{\circ}C$ for 6 h, x = 0.3 shows the lowest activation energy of 0.42 eV in the temperature range of room temperature to $300^{\circ}C$.

Growth of Epitaxial AlN Thin Films on Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법을 이용한 사파이어 기판 위 질화알루미늄 박막의 에피탁시 성장)

  • Lee, Hyo-Sung;Han, Seok-Kyu;Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Hong, Soon-Ku;Jeong, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • 제21권11호
    • /
    • pp.634-638
    • /
    • 2011
  • We report growth of epitaxial AlN thin films on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. To achieve two-dimensional growth the substrates were nitrided by nitrogen plasma prior to the AlN growth, which resulted in the formation of a two-dimensional single crystalline AlN layer. The formation of the two-dimensional AlN layer by the nitridation process was confirmed by the observation of streaky reflection high energy electron diffraction (RHEED) patterns. The growth of AlN thin films was performed on the nitrided AlN layer by changing the Al beam flux with the fixed nitrogen flux at 860$^{\circ}C$. The growth mode of AlN films was also affected by the beam flux. By increasing the Al beam flux, two-dimensional growth of AlN films was favored, and a very flat surface with a root mean square roughness of 0.196 nm (for the 2 ${\mu}m$ ${\times}$ 2 ${\mu}m$ area) was obtained. Interestingly, additional diffraction lines were observed for the two-dimensionally grown AlN films, which were probably caused by the Al adlayer, which was similar to a report of Ga adlayer in the two-dimensional growth of GaN. Al droplets were observed in the sample grown with a higher Al beam flux after cooling to room temperature, which resulted from the excessive Al flux.

Study on Application of the Physical Detection Methods for Electron Beam-Irradiated Agricultural Products (전자선 조사된 농산물의 물리적 검지 방법의 적용에 관한 연구)

  • Kim, Dong Yong;Park, Yong Dae;Jin, Chang Hyun;Choi, Dae Seong;Yook, Hong-Sun;Jeong, Il Yun
    • Journal of Radiation Industry
    • /
    • 제4권3호
    • /
    • pp.221-226
    • /
    • 2010
  • Physical detection methods, photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) were applied to detect electron beam-irradiated agricultural products, such as red pepper, black pepper, raisin, walnut, beef seasoning and pistachio. The absorbed irradiation doses for representative samples were controled at 0, 1, 3, 5 and 10 kGy. PSL values for non-irradiated samples were <700 counts/60s (lower threshold, $T_1$) except beef seasoning, whereas those of irradiated samples were more than 5,000 photon counts, upper threshold ($T_2$) in black pepper, raisin, and beef seasoning and intermediates values of $T_1-T_2$ in red pepper, walnut, and pistachio. Minerals seperated from the samples for TL measurement showed that non-irradiated samples except pistachio (TL ratio, 0.12) were characterized by no glow curves situated at temperature range of $50{\sim}400^{\circ}C$ with TL ratio (0.01~0.08), while irradiated samples except pistachio at only 1 kGy (TL ratio, 0.08) indicated glow curve at about $150{\sim}250^{\circ}C$ with TL ratio (0.28~3.10). ESR measurements of irradiated samples showed any specific signals to irradiation. The samples of both red pepper and pistachio were produced specific signals derived from cellulose radicals as well as single line signals for black pepper and walnut, and multiple signals derived from crystalline sugar radicals for raisin and beef seasoning. In conclusion, The ESR methods can apply for detection of pistachio exposed to electron beam but PSL and TL are not suitable methods. Furthermore, TL and ESR suggeted that both techniques were more useful detection method than PSL to confirm whether red pepper, walnut and beef seasoning samples have been exposed to electron beam.

The comparisons of layers and the effect of additional firings on flexural strength and translucency of 5Y-ZP (Translucent zirconia의 layer 간 비교 및 추가적인 소성이 굽힘강도, 투과도에 미치는 영향)

  • Kim, Hyung-Joon;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • 제37권3호
    • /
    • pp.111-122
    • /
    • 2021
  • Purpose: The purpose of this in vitro study was to investigate the flexural strength and translucency of three layers in 5Y-ZP and to assess the effect of additional firings on these properties. Materials and Methods: Sintered zirconia blocks were sectioned according to three layers : incisal, transition, and body. Disc-shaped specimens were fabricated from each layer. The diameter of specimens was 15.0 mm and each thickness of specimens for biaxial flexural strength test and translucency was 1.2 mm and 1.0 mm. The specimens were classified into subgroups according to the number of firing (0, 1, and 3 times; n = 10/subgroup) and the additional firings were performed under 900℃ using a furnace. Biaxial flexural strength and translucency was measured using universal testing machine and uv-vis spectrophotometer. X-ray diffraction (XRD) analysis was used for measurement of the phase identification. One-way ANOVA, Tukey HSD test were performed (α = 0.05). Results: There was no significant difference in flexural strength between the three layers (P > 0.05), while there was significant difference in translucency between different layers (P < 0.05). The flexural strength of incisal and transition layer was decreased by the single additional firing, and the three additional firings significantly decreased the flexural strength of three layers. The translucency of layer was decreased by additional firings except the body layer. The XRD patterns of all groups were similar. Conclusion: Three layers of 5Y-ZP were different only in translucency. Additional firings affected the flexural strength and translucency differently depending on the layers but crystalline phases were not changed.