• Title/Summary/Keyword: Single crystal thin film

Search Result 304, Processing Time 0.023 seconds

Growth of Er : $LiNbO_{3}$ single crystal thin film with high crystal quality by LPE method

  • Tong-Ik Shin;Hyun Lee;Joong-Won Shur;Byungyou Hong;Dae-Ho Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.295-298
    • /
    • 1999
  • High quality of $Er_{2}O_{3}$ doped $LiNbO_{3}$ single crystal thin films were grown by the liquid phase epitaxial (LPE) method using $Er_{2}O_{3}$ doped at concentrations of 1,3, and 5 mol% respectively. After the growth of single crystal thin film, the crystallinity and the lattice mismatch along the c-axis between the film and the substrate was examined as a function of the variations of{{{{{Er}_{2}{O}_{3}}}}} dopant concentration using a X-ray double crystal technique. There was no lattice mismatch along the c-axis for the undoped film and those doped with 1 and 3 mol% of $Er_{2}O_{3}$. For 5 mol% of $Er_{2}O_{3}$ doped film, the lattice mismatch was $7.86{\times}10^{-4}$nm along the c-axis.

  • PDF

Photoluminescience Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 광발광 특성)

  • Lee, S.Y.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.386-391
    • /
    • 2003
  • Sing1e crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}\;s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.86\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155K)$. After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also, we confirmed that Al in $CuAlSe_2/GaAs$ did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

The Effect of Thernal Annealing and Growth of $CdIn_2S_4$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의해 성장된 $CdIn_2S_4$ 단결정 박막 성장의 광학적 특성)

  • Yun, Seok-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.129-130
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $CdIn_2S_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $420^{\circ}C$, respectively. After the as-grown $CdIn_2S_4$ single crystal thin films was annealed in Cd-, S-, and In-atmospheres, the origin of point defects of $CdIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cd}$, $V_s$, $Cd_{int}$, and $S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment m the S-atmosphere converted $CdIn_2S_4$ single crystal thin films to an optical p-type. Also. we confirmed that In in $CdIn_2S_4$/GaAs did not form the native defects because In in $CdIn_2S_4$ single crystal thin films existed in the form of stable bonds.

  • PDF

Growth and Effect of Thermal Annealing for CuInse2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 CuInse2 단결정 박막 성장과 열처리 효과)

  • Lee Gyungou;Hong Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.755-763
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInse_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInse_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C\;and\;410^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $CuInse_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)=1.1851 eV - (8.99{\times}10^{-4} eV/K)T^2/(T+153 K)$. After the aa-grown $CuInse_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres, the origin of point defects of $CuInse_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{cu},\;V_{Se},\;Cu_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInse_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInse_2$/GaAs did not form the native defects because In in $CuInse_2$ single crystal thin films existed in the form of stable bonds.

Growth and Study on Photo current of Valence Band Splitting for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 특성)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.85-86
    • /
    • 2006
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=19501 eV-(879{\times}10^{-4} eV/K)T^2/(T+250 K)$.

  • PDF

Growth of $Er:LiNbO_3$ single crystal thin film with high crystal quality by LPE method (LPE법에 의한 고품질 $Er:LiNbO_3$ 단결정 박막의 성장)

  • Shin, Tong-Il;Lee, Hyun;Shur, Joong-Won;Byungyou Hong;Yoon, Dae-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.305-320
    • /
    • 1999
  • It was grown Er2O3 doped LiNbO3 single crystal thin films with high crystal quality by liquid phase epitaxial (LPE) method. Er2O3 was doped with a concentration of 1, 3, and 5 mol% respectively. After the growth of single crystal thin film, we examined the crystallinity and the lattice mismatch along the c-axis between the film and the substrate with the variation of Er2O3 dopant using X-ray double crystal technique. There were no lattice mismatches along the c-axis for the undoped and the films doped with 1 and 3 mol% of Er2O3. For 5 mol% of Er2O3 doped film, there was a lattice mismatch of 7.86x10-4nm along the c-axis.

  • PDF

Optical properties and Growth of CuAlSe$_2$ Single Crystal Thin Film by Hot Wal1 Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 점결함 특성)

  • Hong, Kwang-Joon;Yoo, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.76-77
    • /
    • 2005
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410$^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXO). The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorpt ion spectra was wel1 described by the Varshni's relation, $E_g$(T) = 2.8382 eV - ($8.86\times10^{-4}$ eV/H)$T_2$/(T + 155K). After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{cd}$, $V_{se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also. we confirmed that hi in $CuAlSe_2$/GaAs did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Growth and Characterization of CuGaTe$_2$ Sing1e Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE) 방법에 의한 CuGaTe$_2$ 단결정 박막 성장과 특성)

  • 유상하;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.273-280
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the CuGaTe$_2$ single crystal thin films was prepared from horizontal furnance. For extrapolation method of X-ray diffraction patterns for the CuGaTe$_2$ polycrystal, it was found tetragonal structure whose lattice constant a$\_$0/ and c$\_$0/ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaTe$_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 670 $^{\circ}C$ and 410 $^{\circ}C$ respective1y, and the thickness of the single crystal thin films is 2.1 $\mu\textrm{m}$. The crystalline structure of single crystalthin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of CuGaTe$_2$ single crystal thin films deduced from Hall data are 8.72${\times}$10$\^$23/㎥, 3.42${\times}$10$\^$-2/㎡/V$.$s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the CuGaTe$_2$ single crystal thin film, we have found that the values of spin orbit coupling Δs.o and the crystal field splitting Δcr were 0.0791 eV and 0/2463eV at 10K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0490eV, 0.00558eV, respectively.

  • PDF