• Title/Summary/Keyword: Single crystal diamond

Search Result 94, Processing Time 0.024 seconds

The removal of saw marks on diamond wire-sawn single crystalline silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.171-174
    • /
    • 2016
  • The diamond wire sawing method to produce silicon wafers for the photovoltaic application is still a new and highly investigated wafering technology. This technology, featured as the higher productivity, lower wear of the wire, and easier recycling of the coolant, is expected to become the mainstream technique for slicing the silicon crystals. However, the saw marks on the wafer surface have to be investigated and improved. This paper discusses the removal of saw marks on diamond wire-sawn single crystalline silicon wafer. With a pretreatment step using tetramethyl ammonium hydroxide ($(CH_3)_4NOH$, TMAH) and conventional texturing process with KOH solution (1 % KOH, 8 % IPA, and DI water), the saw marks on the surface of the diamond wire-sawn silicon wafers can be effectively removed and they are invisible to naked eyes completely.

Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography (가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석)

  • Yu, Yeong-Jae;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

A Study on the Surface Roughness in Ultra-Precision Cutting of Electroless Nickel (무전해 니켈의 초정밀 절삭에 의한 표면거칠기 연구)

  • 권우순;김동현;난바의치
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.538-541
    • /
    • 2003
  • Ultra-precision machining was carried out on a electroless nickel materials using single crystal diamond tools. The effects of the cutting velocity, the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness were studied. In this paper, the cutting condition for getting nano order smooth surface of electroless nickel have been examined experimentally by the ultra-precision machine and single crystal diamond tools. And also. the surface roughness was measured by the three dimension

  • PDF

A Study on the Mirror-like machining of MgO Single Crystal with Optimum In-process Electrolytic Dressing System (최적 전해드레싱을 적용한 단결정 산화마그네슘(MgO)의 경면가공에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.76-81
    • /
    • 1995
  • MgO single crystal is widely used as a the material of high temperature resistance, but is difficult to grind because of brittleness and crack generation. Therefore, superabrasive diamond wheel is required for mirror like grinding of this material. This study describes a newly proposed optimum in-process electrolytic dressing system for carrying out effective dressing of superbrasive diamond wheel. Using this system the grinding surface of MgO single crystal was improved, the grinding force was very l9ow and crack was removed. In conclusion, this system is good to obtain the efficient grinding and mirror-like grinding without crack of MgO single crystal.

  • PDF

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

A study on the economics of hypereutectic Al-Si alloy cutting with single crystal diamond tool (단결정 다이아몬드 절삭에 의한 과공정 Al-Si합금의 경제성에 관한 연구)

  • 이은상;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1096-1105
    • /
    • 1994
  • A hypereutectic Aluminum-Silicon Alloy is widely used in the parts of automobile because of high-resistance and good strength. In this study, the cutting of hypereutectic A1-Si alloy for economical production was investigated by simulation. Tool life and the extraction rate of Si particles is inversely proportional to the depth of cut. When decreasing the depth of cut, the reduction of single crystal diamond tool cost and tool change time is achieved.

A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature (HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화)

  • Gwon, J.U.;Kim, M.S.;Jang, T.H.;Bae, M.K.;Kim, S.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Machinability in Micro-precision Machining of Ni-Plated Layer by Diamond Tool (다이어몬드 공구를 이용한 Ni 도금층의 정밀미세가공 시 절삭성)

  • Kim, Seon-Ah;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.636-641
    • /
    • 2009
  • Recently, expansion of micro-technology parts requires micro-precision machining technology. Micro-groove machining is important to fabricate micro-grating lens and many micro-parts such as microscope lens, fluidic graphite channel etc. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. But, mechanical micromachining methods using single crystal diamond tools can reduce these problems in chemical process. For this reason, microfabrication methods are expected to be very efficient, and widely studied. This study deals with machinability in micro-precision V-grooves machining of nickel plated layer using non-rotational single crystal diamond tool and 3-axis micro stages. Micro V-groove shape, chip formation and tool wear were investigated for the analysis of machinability of Ni plated layer.

  • PDF