• 제목/요약/키워드: Single cell protein

검색결과 482건 처리시간 0.029초

단세포단백질 생산을 위한 혼합배양의 생육조건 (Growth conditions of symbiosis for production of single cell protein)

  • 이해경;정영건;권오진
    • Applied Biological Chemistry
    • /
    • 제39권5호
    • /
    • pp.343-348
    • /
    • 1996
  • Mouse의 대장에서 분리된 E. coli LI-10 균주를 보조균주로 하여 Cellulomonas sp. KL-6과 혼합배양한 결과, 균체증식은 주균주와 보조균주를 1 : 1(v/v)의 비로 혼합하였을 때 가장 좋았다. 혼합배양은 주균주 단독배양 보다 균체증식을 63% 정도로 증가시켰으며 두 균주의 분포도는 10 : 1 비율로 KL-6 균주가 주로 분포되어 있었다. 0.1%의 $CaCO_3$의 첨가는 무첨가에 비해 각 배양기간별로 pH를 상승시켜 어느정도의 균체증식을 가져왔다. Filter paper 배지에서 혼합배양시, 본 균주들은 cellobiose를 월등하게 많이 생산하였으나 glucose는 검출되지 않았다. 균체증식 최적배지에서 4일간 혼합배양하였을 때, $1.0\;g/{\ell}$의 균체량을 생산하여 기본배지인 CMC 배지에서 생산한 균체량보다 53% 정도가 증가되었다.

  • PDF

Characterization of ORF39 from Helicoverpa armigera Single-nucleocapsid Nucleopolyhedrovirus, the Gene Containing RNA Recognition Motif

  • Xu, Hai-Jun;Liu, Yan-He;Yang, Zhang-Nv;Zhang, Chuan-Xi
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.263-269
    • /
    • 2006
  • In the genome of Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus, open reading frame 39 (Ha39) is the only gene predicted to encode an RNA recognition protein. Computer analysis revealed that Ha39 homologues were found in 15 NPVs, but not in GVs. Its transcripts were detected from 3 through 72 hours post infection (h p.i.) using RT-PCR and Northern blot analysis. The protein was detected in infected-cell lysates from 6 h p.i. Western blot assay of ODV and BV preparations revealed that Ha39 encodes a structural protein associated with BVs. Additionally, immunofluorescence microscopy demonstrated that the protein was present within cytoplasm in virus-infected cells, but not in the nuclear region.

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.

Asymmetric Polymerase Chain Reaction-Single-Strand Conformation Polymorphism (Asymmetric PCR-SSCP) as a Simple Method for Allele Typing of HLA-DRB

  • Kang, Joo-Hyun;Kim, Kyeong-Hee;Maeng, Cheol-Young;Kim, Kil-Lyong
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.529-534
    • /
    • 1999
  • Asymmetric PCR and single-strand conformation polymorphism (SSCP) methods were combined to analyze human leukocyte antigen (HLA)-DRB allele polymorphism. Asymmetric PCR amplification was applied to generate single-stranded DNA (ssDNA) using the nonradioactive oligonucleotide primers desinged for the polymorphic exon 2 region. The conformational differences of ssDNAs, depending on the allele type, were analyzed by nondenaturing polyacrylamide gel electrophoresis and visualized by ethidium bromide staining. The ssDNAs were clearly separated from double-stranded DNA without interference and obviously migrated depending on their allele type. This method was applied to the genomic DNA either from homozygous or from heterozygous cell lines containing the DR4 allele as template DNA using DR4-specific primers, and satisfying results were obtained. Compared to the standard PCR-SSCP method, this asymmetric PCR-SSCP method has advantages of increased speed, reproducibility, and convenience. Along with PCR-SSP or sequence-based typing, this method will be useful in routine typing of HLA-DRB allele.

  • PDF

The Disruption of Saccharomyces cerevisiae Cells and Release of Glucose 6-Phosphate Dehydrogenase (G6PDH) in a Horizontal Dyno Bead Mill Operated in Continuous Recycling Mode

  • Mei Chow Yen;Ti Tey Beng;Ibrahim Mohammad Nordin;Ariff Arbakariya;Chuan Ling Tau
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.284-288
    • /
    • 2005
  • Baker's yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to $50\%$(w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of $20\%$(ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to $85\% (v/v)$. Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than $20\%(w/v)$ and 10 m/s, respectively.

Production of Functional High-protein Beverage Fermented with Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food

  • Cho, Young-Hee;Shin, Il-Seung;Hong, Sung-Moon;Kim, Cheol-Hyun
    • 한국축산식품학회지
    • /
    • 제35권2호
    • /
    • pp.189-196
    • /
    • 2015
  • The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 109 CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties.

Characterization of Ha29, a Specific Gene for Helicoverpa armigera Single-nucleocapsid Nucleopolyhedrovirus

  • Guo, Zhong-Jian;An, Shi-Heng;Wang, Dun;Liu, Yan-He;Kumar, V. Shyam;Zhang, Chuan-Xi
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.354-359
    • /
    • 2005
  • Open reading frame 29 (ha29) is a gene specific for Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HearSNPV). Sequence analyses showed that the transcription factor Tfb2 motif, bromodomain and Half-A-TPR (HAT) repeat were present at aa 66-82, 4-76, 55-90 of the Ha29 protein respectively. The product of Ha29 was detected in HearSNPV-infected HzAM1 cells at 3 h post-infection. Western blot analysis using a polyclonal antibody produced by immunizing a rabbit with purified GST-Ha29 fusion protein indicates that Ha29 is an early gene. The size of Ha29 product in infected HzAM1 cells was about 25 kDa, which was larger than the presumed size of 20.4 kDa. Tunicamycin treatment of HearSNPV-infected HzAM1 cells suggested that the Ha29 protein is N-glycosylated. Fluorescent confocal laser scanning microscope examination, and Western blot analysis of purified budded virus (BVs), occlusion-derived virus (ODVs), cell nuclear and cytoplasmic fraction, showed that the Ha29 protein was localized in the nucleus. Our results suggested that ha29 of HearSNPV encodes a non-structurally functional protein that may be associated with virus gene transcription in Helicoverpa hosts.

Antifungal and Plant Growth Promotion Activities of Recombinant Defensin Proteins from the Seed of Korean Radish (Raphanus sativus L.)

  • Hwang, Cher-Won
    • 한국환경농학회지
    • /
    • 제28권4호
    • /
    • pp.435-441
    • /
    • 2009
  • In the present study, we analyzed the defensin protein deduced from Korean radish (Raphanus sativus L.) seeds.To express the genes in E. coli, we constructed a recombinant expression vector with a defensin gene, named rKRs-AFP gene isolated from Korean radish seeds. Over expressed rKRs-AFP proteins was separated by SDS-PAGE to determine the purity, and protein concentration was determined by the Bradford method. Antifungal activity was assessed by disk assay method against the tested fungi. As a result, when 500 mL of cell culture were disrupted by sonicator, 32.5 mg total proteins were obtained. The purified protein showed a single band on SDS-PAGE with estimated molecular weight about 6 KDa, consistent with the molecular mass calculated from the deduced amino acid sequence. The purified rKRs-AFP protein showed remarkable antifungal activities against several fungi including Aspergillus niger, Botrytis cinerea causing the gray mold disease, and Candida albicans. In field tests using the purified rKRs-AFP protein, the protein showed the reducing activity of disease spot and the mitigating effect of spreading of disease like agrichemicals. The immuno-assay of rKRs-AFP protein showed that the purified protein entirely accumulated at B. cinerea cytoplasm through the hyphal septa shown by fluorescence imaging. There was no fluorescence inside the cell, when the hypha was incubated without the protein. These all results indicate that the recombinant rKRs-AFP proteins can be utilized as a potential antifungal drug to control harmful plant fungal pathogens.

Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules

  • Kwon, Sunjong
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.65-72
    • /
    • 2013
  • In situ detection of RNAs is becoming increasingly important for analysis of gene expression within and between intact cells in tissues. International genomics efforts are now cataloging patterns of RNA transcription that play roles in cell function, differentiation, and disease formation, and they are demon-strating the importance of coding and noncoding RNA transcripts in these processes. However, these techniques typically provide ensemble averages of transcription across many cells. In situ hybridization-based analysis methods complement these studies by providing information about how expression levels change between cells within normal and diseased tissues, and they provide information about the localization of transcripts within cells, which is important in understanding mechanisms of gene regulation. Multi-color, single-molecule fluorescence in situ hybridization (smFISH) is particularly useful since it enables analysis of several different transcripts simultaneously. Combining smFISH with immunofluorescent protein detection provides additional information about the association between transcription level, cellular localization, and protein expression in individual cells.

Phosphorylation of SAV1 by mammalian ste20-like kinase promotes cell death

  • Park, Byoung-Hee;Lee, Yong-Hee
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.584-589
    • /
    • 2011
  • The mammalian ste20-like kinase (MST) pathway is important in the regulation of apoptosis and cell cycle and emerges as a novel tumor suppressor pathway. MST-induced phosphorylation of Salvador homolog 1 (SAV1), which is a scaffold protein, has not been evaluated in detail. We performed a mass spectrometric analysis of the SAV1 protein that was co-expressed with MST2. Phosphorylation was detected at Thr-26, Ser-27, Ser-36 and Ser-269. Although single or double mutations had little effects, the mutation of all four residues in SAV1 to Ala (SAV1-4A) had inhibitory effects on the MST pathway. MST2-mediated induction of SAV1-4A protein levels, SAV1-4A interaction with MST2 and the self-dimerization of SAV1-4A were weaker compared to those of wild-type SAV1. SAV1-4A inhibited MST2- and K-RasG12V-induced cell death of MCF7 cells. These results suggest that MST-mediated phosphorylation of four residues within SAV1 may be important in the induction of cell death by the MST pathway.