• Title/Summary/Keyword: Single Layer

Search Result 2,888, Processing Time 0.037 seconds

Performance Evaluation of Welded Joints for Single-Layer Latticed Domes through Joint Rigidity Test (단층 래티스 돔에 적용 가능한 용접 접합부의 휨실험을 통한 성능 평가)

  • Lee, Young Hak;Seo, Sang Hoon;Kim, Min Sook;Kim, Hee Cheul;Lee, Sung Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.601-608
    • /
    • 2008
  • Joints of single-layer latticed domes show various flexural behaviors according to their shapes and connecting methods. Ball joints are relatively easy to apply and build while their rigidities are relatively small and have disadvantage in long span. Welded joints have many advantages in rigidity, internal force and long span. However few experimental studies have been performed. In this paper, improved welded joint for the single layer latticed domes was proposed through both analytical and experimental analyses. Length of inserted plates, thickness of inserted plates and hole of sub steel pipes were selected as parameters for experimental comparisons and defining the effects of the selected variables.

Extending the Single-Mode-Operation Radius of the Oxide-VCSEL by Controlling the Thickness and Position of the Oxide-Layer (Oxide층의 두께와 위치 조절을 통한 oxido-VCSEL의 단일모드 동작반경 확장)

  • 김남길;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.31-37
    • /
    • 2004
  • We have proposed a design methodology for large active-area single-mode VCSELS, which have higher reliability and output power, and are well-suited for high-speed operation. The key idea underlying the design methodology is to reduce the effective index difference between active and cladding regions by controlling the thickness and position of the oxide layer. The idea is confirmed by the self-consistent effective index method. By placing the oxide layer position properly, we can increase the radius of the oxide aperture for single-mode operation by 3 times.

Dynamically Reconfigurable SoC 3-Layer Bus Structure (동적 재구성이 가능한 SoC 3중 버스 구조)

  • Kim, Kyu-Chull;Seo, Byung-Hyun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Growth in the VLSI process and design technology is resulting into a continuous increase in the number of IPs on a chip to form a system. Because of many IPs on a single chip, efficient communication between IPs is essential. We propose a dynamically reconfigurable 3-layer bus structure which can adapt to the pattern of data transmission to achieve an efficient data communication between various IPs. The proposed 3-layer bus can be reconfigured to multi-single bus mode, and single-multi bus mode, thus providing the benefits of both single-bus and multi-bus modes. Experimental results show that the flexibility of the proposed bus structure can reduce data transmission time compared to the conventional fixed bus structure. We incorporated the proposed bus structure in a JPEG system and verified that the proposed structure achieved an average of 22% improvement in time over the conventional fixed bus structure.

  • PDF

$CeO_2$ Single Buffer Deposition on RABiTS for SmBCO Coated Conductor

  • Kim, T.H.;Kim, H.S.;Ha, H.S.;Yang, J.S.;Lee, N.J.;Ha, D.W.;Oh, S.S.;Song, K.J.;Jung, Y.H.;Pa, K.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.180-181
    • /
    • 2006
  • As a rule, high temperature superconducting coated conductors have multi-layered buffers consisting of seed, diffusion barrier and cap layers. Multi-buffer layer deposition requires longer fabrication time. This is one of main reasons which increases fabrication cost Thus, single buffer layer deposition seems to be important for practical coated conductor process. In this study, a single layered buffer deposition of $CeO_2$ for low cost coated conductors has been tried using thermal evaporation technique 100nm-thick $CeO_2$ layers deposited by thermal evaporation were found to act as a diffusion layer. $0.4{\mu}m$-thick SmBCO superconducting layers were deposited by thermal co-evaporation on the $CeO_2$ buffered Ni-W substrate. Critical current of 118A/$cm^2$ was obtained for the SmBCO coated conductors.

  • PDF

SiC single crystal grown on a seed with an inserted epitaxial layer for the power device application

  • An, Jun-Ho;Kim, Jeong-Gon;Seo, Jeong-Du;Kim, Jeong-Gyu;Gyeon, Myeong-Ok;Lee, Won-Jae;Kim, Il-Su;Sin, Byeong-Cheol;Gu, Gap-Ryeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.232-232
    • /
    • 2006
  • SiC single crystal Ingots were prepared onto different seed material using sublimation PVT techniques and then their crystal quality was systematically compared. In this study, the conventional SiC seed material and the new SiC seed material with an inserted SiC epitaxial layer on a seed surface were used as a seed for SiC bulk growth. The inserted epitaxial layer was grown by a sublimation epitaxy method called the CST with a low growth rate of $2{\mu}m/h$ N-type 2"-SIC single crystals exhibiting the polytype of 6H-SiC were successfully fabricated and carrier concentration levels of below $10^{17}/cm^3$ were determined from the absorption spectrum and Hall measurements. The slightly higher growth rate and carrier concentration were obtained in SiC single crystal Ingot grown on new SiC Seed materials with the inserted epitaxial layer on the seed surface, maintaining the high quality.

  • PDF

Seismic Response of Arch Structure according to the Aspect Ratio and Columns (아치구조물의 형상비와 하부구조에 따른 지진응답특성에 관한 연구)

  • Seok, Keun-Young;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.71-78
    • /
    • 2012
  • The dynamic behavior of spatial structures is different depending on the aspect ration of arch structure, as the rise-span ratio or open-angle, and these spatial structures show differently the character of seismic response in accordance with stiffness and connection of the lower support structures that are directly influenced by earthquake. Therefore, in this paper, dynamic analysis is conducted for seismic response of single layer arch structures by the influence of column's stiffness and connection, to reflect the different vertical and horizontal vibration mode of single layer arch structures. The vertical response of single layer arch structures is more influence by lower columns and the influence of column's connection rotational stiffness is not large, except to the hinged connections.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

The Elasto-Plastic Buckling Analysis of Ball-Jointed Single Layer Latticed Domes considering the Characteristics of a Connector (적합부 특성을 고려한 볼 접합 단층 래터스 돔의 탄소성 좌굴해석)

  • Han, Sang-Eul;Kwon, Hyun-Jae;Kim, Jong-Bum
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.2 s.8
    • /
    • pp.91-99
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics of the connector having an influence on the elasto-plastic buckling load of ball-jointed single layer latticed domes. As an analytic model, domes are composed of tubular member elements, balls and connectors. The joint system of members in single layer latticed domes has influence on the buckling load. Therefore, in this paper, the variation of the elasto-plastic buckling load by effects of the connectors characteristics is analyzed. The structural behavior of the connector is investigated by following points: (1) the length of rigid zone, (2) looseness of screw and (3) the diameter of connector. In addition, the elasto-plastic buckling analysis is carried out through the variation of the connectors section of yielding part, and then the buckling mode of the dome is examined. As a result, it is emphasized that the characteristics of the connector have significant effects on the buckling load of latticed domes.

  • PDF

An Experimental Study on the Buckling & Behaviour of Single-Layer Latticed Dome (단층 래티스 돔의 좌굴 및 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.35-44
    • /
    • 2006
  • The form-resistant Systems like a dome and shell are used more widely than post-beam structure system in large space structure. Single layer latticed dome system, one of the form-resistant system, has great merits in manufacturing and constructing but the failure mechanism is not clarified yet. The purpose of this paper is to find out the buckling characteristics of single-layer latticed domes with square network by using the experimental method. Major test parameters are the stiffness of lattice member and space of square lattice. The specimens are applied uniform loading of snow type.

  • PDF

Effects of viscous damping models on a single-layer latticed dome during earthquakes

  • Zhang, Huidong;Wang, Jinpeng;Zhang, Xiaoshuai;Liu, Guoping
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.455-464
    • /
    • 2017
  • Rayleigh damping model is recommended in the recently developed Performance-Based Earthquake Engineering (PBEE) methodology, but this methodology does not provide sufficient information due to the complexity of the damping mechanism. Furthermore, each Rayleigh-type damping model may have its individual limitations. In this study, Rayleigh-type damping models that are used widely in engineering practice are discussed. The seismic performance of a large-span single-layer latticed dome subjected to earthquake ground motions is investigated using different Rayleigh damping models. Herein a simulation technique is developed considering low cycle fatigue (LCF) in steel material. In the simulation technique, Ramberg-Osgood steel material model with the low cycle fatigue effect is used to simulate the non-uniformly distributed material damping and low cycle fatigue damage in the structure. Subsequently, the damping forces of the structure generated by different damping models are compared and discussed; the effects of the damping ratio and roof load on the damping forces are evaluated. Finally, the low cycle fatigue damage values in sections of members are given using these damping models. Through a comparative analysis, an appropriate Rayleigh-type damping model used for a large span single-layer latticed dome subjected to earthquake ground motions is determined in terms of the existing damping models.