• Title/Summary/Keyword: Single Jet

Search Result 269, Processing Time 0.022 seconds

Process Control for the Synthesis of Ultrafine Si3N4-SiC Powders by the Hybrid Plasma Processing (Hybrid Plasma Processing에 의한 Si3N4-SiC계 미립자의 합성과정 제어)

  • ;吉田禮
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.681-688
    • /
    • 1992
  • Ultrafine Si3N4 and Si3N4+SiC mixed powders were synthesized through thermal plasma chemical vapor deposition(CVD) using a hybrid plasma, which was characterized by the supersposition of a radio-frequency plasma and arc jet. The reactant SiCl4 was injected into an arc jet and completely decomposed in a hybrid plasma, and the second reactant CH4 and/or NH3 mixed with H2 were injected into the tail flame through double stage ring slits. In the case of ultrafine Si3N4 powder synthesis, reaction efficiency increased significantly by double stage injection compared to single stage one, although crystallizing behaviors depended upon injection speed of reactive quenching gas (NH3+N2) and injection method. For the preparation of Si2N4+SiC mixed powders, N/C composition ratio could be controlled by regulating the injection speed of NH3 and/or CH4 reactant and H2 quenching gas mixtures as well as by adjusting the reaction space.

  • PDF

Ink Jet Printed Full Color Polymer LED Displays

  • Rhee, Jung-Soo;Lee, Dong-Won;Chung, Jin-Koo;Wang, Jian-Pu;Hong, Sang-Mi;Cha, Soon-Wook;Choi, Beom-Rak;Jung, Jae-Hoon;Kim, Nam-Deog;Chung, Kyu-Ha;Gregory, Haydn;Lyon, Peter;Creighton, Colin;Bale, Mark;Carter, Julian
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1046-1049
    • /
    • 2005
  • We have developed polymer LED displays using ink jet printing without visible swathe marks which can be observed during display operation. In addition, we have also developed a single-pass printing technology for hole-conduction layer deposition to significantly reduce the complexity of interlacing printing across the panel which is known as an alternative to remove the swathe mark.

  • PDF

A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System (잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계)

  • 조영완
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.

Conceptual Studies of Combined-Cycle Engine

  • Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.753-762
    • /
    • 2004
  • Conceptual studies of a combined-cycle engine have been conducted. Herein, the results are presented. The engine is composed of ejector-jet, ramjet, scramjet and rocket modes, and will be mounted on the Single-Stage-to-Orbit aerospace plane. Propellants are hydrogen and oxygen. Calculated engine thrust performances and cooling requirement of the engine are presented. Pitching moment of the plane with the engine will be balanced even in the vacuum condition. The experimental results of the inlet and the ejector-jet, ramjet and scramjet modes are presented. The effect of the airframe configuration on the engine performance and the thermal environment in the in-side of the plane are also presented. Through the investigations, possibilities of the combined-cycle engine and the aerospace plane are being made clear now.

  • PDF

Calculation of the internal flow in a fuel nozzle (연료노즐 내부유동 현상의 수치해석)

  • Gu, Ja-Ye;Park, Jang-Hyeok;O, Du-Seok;Jeong, Hong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1971-1982
    • /
    • 1996
  • The breakup of liquid jet is the result of competing, unstable hydrodynamic forces acting on the liquid jet as it exit the nozzle. The nozzle geometry and up-stream injection conditions affect the characteristics of flow inside the nozzle, such as turbulence and cavitation bubbles. A set of calculation of the internal flow in a single hole type nozzle were performed using a two dimensional flow simulation under different nozzle geometry and up-stream flow conditions. The calculation showed that the turbulent intensity and discharge coefficient are related to needle position. The diesel nozzle with sharp inlet under actual engine condition has possibility of cavitation, but round inlet nozzle has no possibility of cavitation.

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

Nozzle configurations for partially premixed interacting jet flame to enhance blowout limits (다수 부분 예혼합 화염의 화염날림 유속 확대)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single jet, the flames are not extinguished over 2oom/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\Phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying Sand ${\Phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\Phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

  • PDF

First Detection of 350 Micron Polarization from 3C 279

  • Lee, Sang-Sung;Kang, Sincheol;Byun, Do-Young;Chapman, Nicholas;Novak, Giles;Trippe, Sascha;Algaba, Juan-Carlos;Kino, Motoki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2015
  • We report the first detection of linearly polarized emission at an observing wavelength of 350 mum from the radio-loud active galactic nucleus 3C 279. We conducted polarization observations for 3C 279 using the SHARP polarimeter in the Caltech Submillimeter Observatory on 2014 March 13 and 14. For the first time, we detected the linear polarization with the degree of polarization of $13.3%{\pm}3.4%$ (3.9sigma) and the electric vector position angle (EVPA) of $34.^{\circ}7{\pm}5.^{\circ}6$. We also observed 3C 279 simultaneously at 13, 7, and 3.5 mm in dual polarization with the Korean very long baseline interferometry (VLBI) Network on 2014 March 6 (single dish) and imaged in milliarcsecond (mas) scales at 13, 7, 3.5, and 2.3 mm on March 22 (VLBI). We found that the degree of linear polarization increases from 10% to 13% at 13 mm to 350 mum and the EVPAs at all observing frequencies are parallel within < $10^{\circ}$ to the direction of the jet at mas scale, implying that the integrated magnetic fields are perpendicular to the jet in the innermost regions. We also found that the Faraday rotation measures RM are in a range of $-6.5{\times}102{\sim}-2.7{\times}103$ rad m-2 between 13 and 3.5 mm, and are scaled as a function of wavelength:| {RM}| ${\backslash}propto$ {lambda }-2.2. These results indicate that the millimeter and sub-millimeter polarization emission are generated in the compact jet within 1 mas scale and affected by a Faraday screen in or in the close proximity of the jet.

  • PDF

Viable Bacterial Cell Patterning Using a Pulsed Jet Electrospray System

  • Chong, Eui-seok;Hwang, Gi Byung;Kim, Kyoungtae;Lee, Im-Soon;Han, Song Hee;Kim, Hyung Joo;Jung, Heehoon;Kim, Sung-Jin;Jung, Hyo Il;Lee, Byung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.381-385
    • /
    • 2015
  • In the present study, drop-on-demand two-dimensional patterning of unstained and stained bacterial cells on untreated clean wafers was newly conducted using an electrospray pulsed jet. We produced various spotted patterns of the cells on a silicon wafer by varying the experimental conditions, such as the frequency, flow rate, and translational speed of the electrospray system in a two-dimensional manner. Specifically, the electrospray's pulsed jet of cell solutions produced alphabetical patterns consisting of spots with a diameter of approximately $10{\mu}m$, each of which contained a single or a small number of viable bacteria. We tested the viability of the patterned cells using two visualization methods. This pattering technique is newly tested here and it has the potential to be applied in a variety of cell biology experiments.

Development of a new thermal inkjet head with the virtual valve fabricated by MEMS technology (멤스기술을 이용한 가상밸브가 있는 새로운 잉크젯 헤드 개발)

  • Bae, Ki-Deok;Baek, Seog-Soon;Shin, Jong-Woo;Lim, Hyung-Taek;Shin, SuHo;Oh, Yong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1892-1897
    • /
    • 2003
  • A new thermal inkjet printer head on SOI wafer with virtual valve was proposed. It was composed of two rectangular heaters with same size. So we could call it T-jet(Twin jet). T-jet has a lot of merits. It has the advantage of being fabricated with one wafer and is easy to change the size of chamber, nozzle, restrictor and so on. However, above all, It is the best point that T-jet has a virtual valve. And it was manufactured on SOI wafer. The chamber was formed in its upper silicon whose thickness was 40um. The chamber's bottom layer was silicon dioxide of SOI wafer and two heaters were located underneath the chamber's ceiling. And the restirctor was made beside the chamber. Nozzle was molded by process of Ni plating. Ni was 30um thick. Nozzle ejection test was performed by printer head having 56 nozzles in 2 columns with 600NPI(nozzle per inch) and black ink. It measured a drop velocity of 12m/s, a drop volume of 30pl, and a maximum firing frequency of 12KHz for single nozzle ejection. Throwing out the ink drop in whole nozzles at the same time, it was observed that the uniformity of the drop velocity and volume was less than 4%.

  • PDF