• Title/Summary/Keyword: Single Crystals

Search Result 971, Processing Time 0.024 seconds

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.

Synthesis and Structural Characterization of Benzene-sorbed Cd2+-Y(FAU) Zeolite (벤젠이 흡착된 Cd2+-Y(FAU) 제올라이트의 합성 및 구조연구)

  • Moon, Dae Jun;Suh, Jeong-Min;Park, Jong Sam;Choi, Sik Young;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.45-57
    • /
    • 2017
  • Two single crystals of fully dehydrated $Cd^{2+}$-exchanged zeolites Y were prepared by the exchange of ${\mid}Na_{75}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$ ($Na_{75}-Y$, Si/Al = 1.56) with aqueous $0.05M\;Cd(NO_3)_2$ (pH = 3.65) at 294 K, followed by vacuum dehydration at 723 K (crystal 1) and a second crystal, similarly prepared, was exposed to zeolitically dried benzene for 72 hours at 294 K and evacuated (crystal 2). Their structures were determined crystallographically using synchrotron X-rays and were refined to the final error indices using $F_o$>$4{\sigma}(F_o)$ of $R_1/wR_2=0.040/0.121$ and 0.052/0.168, respectively. In crystal $1({\mid}Cd_{36}H_3{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions primarily occupy sites I and II, with additional $Cd^{2+}$ ions at sites I', II', and a second site II. In crystal $2({\mid}Cd_{35}(C_6H_6)_{24}H_5{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions occupy five crystallographic sites. The 24 benzene molecules are found at two distinct positions within the supercages. The 17 benzene molecules are found on the 3-fold axes in the supercages where each interacts facially with one of site IIa $Cd^{2+}$ ions. The remaining 7 benzene molecules lie on the planes of the 12-rings where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.

Ultrastructural Changes during Germination of Ginseng Seeds (Panax ginseng) (인삼종자의 발아과정에 있어서 미세구조의 변화)

  • Kim, Woo-Kap;Park, Hong-Duok;Kim, Eun-Soo;Han, Sung-Sik
    • Applied Microscopy
    • /
    • v.9 no.1
    • /
    • pp.57-69
    • /
    • 1979
  • The ultrastructural changes of embryo and endosperm cells were observed during the green fruit with embryo about $250{\mu}$ long to germination. 1. In the embryo cells of green fruit with embryo about $250{\mu}$ long, mitochondrial cristae and plastid are undifferentiated and dictyosome are occasionally observed. There are electron-opaque globoids in the vacuole and a lot of spherosomes in the outer layer of smooth endoplasmic reticulum. Endosperm is filled with spherosomes and electron-opaque protein bodies surrounded by spherosomes, and due to these, other organelle are not observed. 2. In the embryo cells of seeds with red seed coat, mitochondrial cristae are well developed, electron-opaque globoids increased, and vacuoles are enlarged. In the endosperm, however, spherosomes increased, protein bodies are enlarged, and electron-opaque globoidal crystals are dispersed within them. 3. In the procambium and epicotyl cells of dehiscent seed, Golgi vacuoles and vesicles are well developed, and mitochondrial cristae are also well differentiated. Spherosomes are numerously present and radicle cells, peripheral cells of hypocotyl, and vacuoles of cotyledon are well differentiated. Endosperm is filled with spherosomes containing electron-opaque granules and protein bodies are surrounded by a single membrane. There are acid phosphatase around globoids and spherosomes. 4. At the time of seeding, spherosomes markedly increased in the outer layer of cotyledon and protein bodies are also observed. Cell organelles are differentiated and plastids containing starch are also present. 5. In the outer $2{\sim}3$ layers of cotyledons, radicle cells, and peripheral cells of hypocotyl during post-seeding to germination, spherosomes and plastids with starch increased, and mitochondria and microbodies are also found around the nucleus of embryo cells. With approaching, the germination stage, in the endosperm contacting with embryo, vacuoles are well differentiated but spherosomes decreased. There increased electron-opaque materials within vacuoles. In other endosperm, with the decrease of spherosome, mitochondria increased and electro n-opaque globular bodies are formed and gradually increased. The outer layer of protein bodies are reduced while electron-transparent portions are enlarged and fused together to occupy the outer layer where small particles are formed. 6. In the endosperm of germination stage, spherosomes decreased while protein bodies, are fused together to form 2 or 3 within a cell.

  • PDF

Two Crystal Structures of Dehydrated Calcium and Silver Exchanged Zeolite A, $Ag_{12-2x}Ca_x-A (x = 2.5 and 5.0)$ (칼슘 및 은 이온으로 치환한 제올라이트 A, $Ag_{12-2x}Ca_x-A (x = 2.5$$5.0)$ 의 탈수한 결정구조)

  • Seung Hwan Song;Jong Yul Park;Kim, Eun Sik;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.452-458
    • /
    • 1989
  • The crystal structures of vacuum-dehydrated $Ag^+\;and\;Ca^{2+}$ exchanged zeolite A, Ag_7Ca_{2.5}-A(a = 12.310(1){\AA})$ and $Ag_2Ca_5-A(a = 12.287(2){\AA})$ have been determined by single-crystal X-ray diffraction methods in the cubic space group Pm3m at $21(1)^{\circ}C$. The crystals of $A_7Ca_{2.5}-A\;and\;Ag_2Ca_5-A$ were prepared by flow method using exchange solutions in which mole ratios of $AgNO_3\;and\;Ca(NO_3)_2$ were 1:50 and 1:1000, respectively, with total concentration of 0.05 M. Full-matrix least-squares refinement converged to the final error indices of R1 = 0.056 and R2 = 0.059 for $Ag7Ca2.5-A$, and R1 = 0.054 and R2 = 0.082 for $Ag2Ca5-A$ using 306 and 348 reflections, respectively, for which I >3 {\sigma}$ (I). 5.5 $Ag^+$ ions and 2.5 Ca^{2+}$ ions for $Ag_7Ca_{2.5}-A\;and\;2\;Ag^+$ ions and 5 $Ca^{2+}$ ions for $Ag_2Ca_5-A$ lie on two crystallographically nonequivalent threefold axes on the 6-rings. Both structures indicate that smaller Ca2+ ions preferentially occupy 6-ring sites and larger $Ag+$ ions occupy 8-ring sites when total number of cations per unit cell is more than 8.

  • PDF

Two Crystal Structures of Fully Dehydrated $Ag_{12-2x}Co_x-A (x = 3 and 4.5)$ (완전히 탈수한 $Ag_{12-2x}Co_x-A$ (x = 3 및 4.5)의 결정구조)

  • Seung Hwan Song;Duk Soo Kim;Jong Yul Park;Un Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.520-527
    • /
    • 1988
  • The crystal structures of $Co^{2+}\;and\;Ag^+\;exchanged\;zeolite\; A,\; Ag_6Co_3$-A(a = 12.131(5)$\AA$) and $Ag_3Co_{4.5}$-A(a = 12.145(1)$\AA$), have been determined by single crystal X-ray diffraction techniques. Both structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}C$. Full-matrix leastsquares refinement converged to the final error indices of R1 = 0.045 and R2 = 0.041 for $Ag_3Co_{4.5}-A,\; and\; R1 = 0.066\; and\; R2 = 0.076\; for\; Ag_6Co_3$-A using the 258 and 189 reflections, respectively, for which I > 3$\sigma$(I). Both structures indicate that CO(Ⅱ)ions are coordinated by three framework oxygens; the Co(II) to O(3) distances are 2.118(4)$\AA$ for $Ag_3Co_{4.5}$-A and 2.106(1)$\AA$ for $Ag_6Co_3-A$, respectively. In each structure, the angle substended at Co(II), O(3)-Co(II)-O(3) is ca 120°, close to the idealized trigonalplanar value. $Co^{2+}$ ions prefer to 6-ring sites and $Ag^+$ ions prefer to 8-ring site when total number of cations is more than 8. The crystals of hydrated and dehydrated $Ag_{12-2x}Co_x-A (x > 4.5)$ had no crystalline diffraction pattern, indicating the apparent exchange limit of $Co^{2+}\; into\; Ag_{12}-A\; is\; 4.5 Co^{2+}$ ions per unit cell. $Co^{2+}$ ions hydrolyze $H_2O$ molecules and $H_3O^+$ concentraction is accumulating. These $H_3O^+$ ions destroy the zeolite structures.

  • PDF

Crystal Structures of Dehydrated $Ag^+\;and\;Zn^{2+}$ Exchanged Zeolite A, $(Ag_{2.8}Zn_{4.6}-A)$ and of Its Ethylene Sorption Complex (은 이온과 아연 이온으로 치환한 제올라이트 A $(Ag_{2.8}Zn_{4.6}-A)$의 탈수한 결정구조와 이것에 에틸렌을 흡착시킨 결정구조)

  • Mi Suk Jeong;Jong Yul Park;Un Sik Kim;Yang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.189-195
    • /
    • 1991
  • Two crystal structures of dehydrated $Ag_{2.8}ZN_{4.6}-A$ and of its ethylene sorption complex have been determined by single-crystal X-ray diffraction techniques. The structures were solved and refined in the cubic space group Pm3m at 23(1)$^{\circ}$C. Dehydration of two crystals studied were achieved at 400$^{\circ}$C and $2{\times}10^{-6}$ Torr for 2 days and one crystal was treated with 250 Torr of ethylene at 25(1)$^{\circ}$C. The structures of dehydrated $Ag_{2.8}ZN_{4.6}-A$ (a = 12.137(2) ${\AA}$ and of its ethylene sorption complex (a = 12.106(2)${\AA}$) were refined to final error indices, R(weighted) = 0.044 with 237 reflections and R(weighted) = 0.050 with 301 reflections, respectively, for which I > 3${sigma}$(I). 2.8 $Ag^+$ ions are recessed 0.922(2) ${\AA}$ from (111) plane of three 6-ring oxygens into the large cavity where each forms a lateral ${\pi}$ complex with an ethylene molecule. These $Ag^+$ ions are in 2.240(5)${\AA}$ from three framework oxide ions and 2.290(5) ${\AA}$ from each carbon atom of an ethylene molecule. The $Zn^{2+}$ ions occupy two different threefold axis positions of the unit cell. 2.8 $Zn^{2+}$ ions are recessed 0.408(2) ${\AA}$ from (111) plane of the 6-ring oxygens and each $Zn^{2+}$ ion forms a $\pi$ complex with an $C_2H_4$ molecule. The distances between $Zn^{2+}$ ions and carbon atom of ethylene molecule, Zn(2)-C = 2.78(4) ${\AA}$ are long. This indicates that this bond is relatively weak.

  • PDF

Two Crystal Structures of Dehydrated $Ag^+$ and $Rb^+$ Exchanged Zeolite A, $Ag^{12-x}Rb_{x}-A$, x = 2 and 3 ($Ag^+$ 이온과 $Rb^+$ 이온으로 치환된 제올라이트 A ($Ag^{12-x}Rb_{x}-A$, x = 2 및 3) 를 탈수한 결정구조)

  • Yang Kim;Seong Hwan Song;Duk Soo Kim;Young Wook Han;Dong Kyu Park
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.18-24
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+$ and $Rb^+$ exchanged zeolite A, stoichiometries of $Ag_{9}Rb_{3}-A$ (a = 12.278(2)${\AA}$) and $Ag_{10}Rb_{2}-A$ (a = 12.286(2)${\AA}$) per unit cell, have been determined by single crystal x-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}$C. The crystals of $Ag_{10}Rb_{2}-A$ and $Ag_{10}Rb_{2}-A$ were prepared by flow methods using exchanged solution in which mole ratios of AgNO$_3$ and RbNO$_3$ were 1:5 and 1:50, respectively, with the total concentration of 0.05 M. The structures of the dehydrated $Ag_{9}Rb_{3}-A$ and the $Ag_{10}Rb_{2}-A$ were refined to the final error indices, $R_1$ = 0.064 and $R_2$ = 0.060 with 291 reflections, and $R_1$ = 0.063 and $R_2$ = 0.080 with 416 reflections respectively, for which I >3${\sigma}$(I). In both structures, one reduced silver atom per unit cell was found inside the sodalite cavity. It may be present as a hexasilver cluster in 1/6 of the sodalite units or as an isolated Ag atom coordinated to 4 $Ag^+$ ions in each sodalite unit to give $(Ag_5)^{4+}$, symmetry 4 mm. In the structure of dehydrated $Ag_{9}Rb_{3}-A$, 8 $Ag^+$ ions lie on the threefold axis and each is nearly at the center of the 8-rings at the sites of $D_{4h}$ symmetry. In the structure of dehydrated $Ag_{10}Rb_{2}-A$, two crystallographically different eight 6-ring $Ag^+$ ions were found; $7Ag^+$ ions in the (111) planes of their O(3) framework oxygens and one $Ag^+$ ion inside of sodalite cavity. Two crystallographically different 8-ring cations were also found; two $Rb^+$ ions at the centers of the 8-oxygen rings and one $Ag^+$ ion into the large cavity. Both structures indicate that $Rb^+$ ions prefer to occupy the 8-ring sites, while $Ag^+$ ions prefer to occupy the 6-ring sites.

  • PDF

Studies on Mycoplasma-Like Organism Associated with Witches' Broom of Rhus javanica (I) (Mycoplasma 성(性) 붉나무빗자루병(病)에 관(關)한 연구(硏究) (I))

  • Kim, Young Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 1980
  • The occurrence of witches' broom of Rhus javanica was first noticed in Korea by the author in 1979. Subsequently, studies were made on the symptomatology, etiology, and transmission of the disease, as well as the effect of some antibiotics on the disease development. The results of these studies are summarized as follows: 1. Symptoms of the infected plant were characterized by dwarfing of the tree accompanied by yellowing and brooming of the foliage. 2. Electron microscopy of witches' broom diseased Rhus javanica plant revealed the occurrence of numerous mycoplasma-like organisms (MLO's) in the phloem tissue cells (sieve tube elements and phloem parenchyma cells) of the rachis and midribs of infected leaves. 3. The MLO's were bounded by a single unit membrane and contained ribosome-like granules and strands presumed to be DNA. It also appears that the MLO multiply possibly by budding as well as binary and plurinary fission. 4. In the midrib of healthy leaves, vascular bundles were collaterally discontinuous. In the diseased leaves, however, xylems were connected to each other and phloem cells showed an atrophy. Granules, which were prominent in the normal abaxial epidermis, were not observed in the peidermis of diseased leaves. 5. Electron microscopy revealed crystals or osmopholic granules in the phloem parenchyma cells, and that normal stacks of grana were not developed in the chloroplasts of infected levels. 6. The disease was experimentally transmitted by grafting. Budding was more effective than crown grafting for transmitting the disease. The disease has been transmitted by grafting even when complete union of stocks and scions has not taken place. The disease agent was not transmitted by sap inoculation. Insect transmission has not been confirmed. 7. Dipping the roots of infected plants into the 500 ppm and 1,000 solutions of either tetracycline HCI or oxytetracycline, HCI was more effective on temporary remision of the symptoms than spraying the 100 ppm and 200 ppm solutions of the same antibiotics. A greater effect was achieved through dipping into 1,000 ppm than into 500 ppm.

  • PDF

Studies on Witches' Broom of Ligustrum ovalifolium Hasskarl Caused by Mycoplasma-like Organism (MLO) (Mycoplasma성(性) 왕쥐똥나무 빗자루병(病)에 관(關)한 연구(硏究))

  • Chai, Jyung-Ki;Kim, Young-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.2
    • /
    • pp.103-118
    • /
    • 1989
  • The occurrence of witches' broom in Ligustrum ovalifolium was first noticed in Korea by author in 1984. The present study was carried out with particular emphasis on the symptomatology, etiology, transmission of the disease and antibiotic treatments. The infected tissue was observed by the fluorescence and electron microscopy and its biochemical characteristics were compared with healthy one by electrophoresis. The results are summarized as follows : 1. symptoms of the infected trees were characterized by the dwarfing of the organs, yellowing and brooming of the foliage. 2. The observation by the trans electron microscopy on the witches' broom of L. ovalifolium revealed the occurrence of numerous mycoplasma-like organisms(MLOs) in the phloem tissue cells of the midribs of infected leaves. 3. The MLOs were surrounded by a single unit membrane, and they appeared to be multiplied by binary fission. 4. The presence of crystals unidentified in the phloem parenchyma cells was noticed by electron rnicroscopy, 5. The disease was able to be transmitted by budding, crown, and greenwood graftings to L. ovalifolium, L. obtusifolium, L, japonicum and also transmitted, even when the stocks and scions were not completely grafted. 6. Insect transmission on L. ovalifolium and L, obtzrsifolium was carried by Hishimonus sellatus. 7. The infected roots dipped in the 1,000 ppm of teracyclin solution was only temporarily effective in controlling the disease. 8. Infected plant with MLOs showed specific fluorescent reactions in phloems with DAPI stain. 9. The protein and peroxidase separated by electrophoresis showed strikingly distinctive difference between the healthy and diseased leaves.

  • PDF