• Title/Summary/Keyword: Single Cell

Search Result 3,842, Processing Time 0.044 seconds

Improved Understanding of LeTID of Single-crystalline Silicon Solar Cell with PERC

  • Kim, Kwanghun;Baik, Sungsun;Park, Jaechang;Nam, Wooseok;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.94-101
    • /
    • 2018
  • Light elevated temperature induced degradation (LeTID) was noted as an issue in multi-crystalline silicon solar cells (MSSC) by Ram speck in 2012. In contrast to light induced degradation (LID), which has been researched in silicon solar cells for a long time, research about both LeTID and the mechanism of LeTID has been limited. In addition, research about LeTID in single-crystalline silicon solar cells (SSSC) is even more limited. In order to improve understanding of LeTID in SSSC with a passivated emitter rear contact (PERC) structure, we fabricated four group samples with boron and oxygen factors and evaluated the solar cell characteristics, such as the cell efficiency, $V_{oc}$, $I_{sc}$, fill factor (FF), LID, and LeTID. The trends of LID of the four group samples were similar to the trend of LeTID as a function of boron and oxygen.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Performance of multi-cell stack for direct methanol fuel cells (직접메탄올 연료전지용 다층스택의 성능특성)

  • Lee, Chang-Hyeong;Jung, Doo-Hwan;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1870-1872
    • /
    • 1999
  • Performance of 20-cell stack for direct methanol fuel cell (DMFC) was tested at constant temperature. Electrode evaluation used to the stack was tested by the performance of a single cell. A new composite electrode prepared from active carbon cloth and high porous active carbon was developed for hydrophilic layer of the cell. Characteristics of a single cell using the composite electrode showed the current density of $500mA/cm^2$ at the cell voltage of 0.4V at $120^{\circ}C$. For the operating of 20 days. the cell voltage at constant cell current densty of $100mA/cm^2$ was slightly reduced from 0.62V to 0.53V with the cell voltage decay rate of 14.5%. Power of 20-cell stack at 5.3V, $100^{\circ}C$ was about 180W.

  • PDF

Phenotype of Hepartocyte Spheroids in Synthetic Thermo-reversible Extracellular Matrix

  • Park, Keun--Hong;Park, Ju-Young;Bae, You-Han
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.264-268
    • /
    • 2001
  • Aggregates of specific cells are often regarded as better from in artificial organs and mammalian cell bioreactors in terms of cell-specific functionality. In this study, the morphology and liver specific functions of freshly harvested primary rat hepatocytes, which were cultivated as spheroids and entrapped in a synthetic thermo-reversible extracellular matrix, were examined and compared to a control (hepatocytes in single cell form). A copolymer of N-isopropylacrylamide(98 mole % in feed) and acrylic acid (poly (NiPAAm-co-AAC)), a thermo- reversible copolymer gel ma- trix, was used to entrap hepatocytes either in spheroids or single cells. During a 7-day culture pe-riod, the spheroids maintained higher viability and produced albumin and urea at a relatively con-stant rate, while, the single cell culture showed a slight increase in cell numbers and a reduction in albumin secretion Hepatocytes cultrured as spheroids present a potentially useful three-dimensional cell culture system for application in bioartificial liver device.

  • PDF

Development of Tubular Solid Oxide Fuel Cell (원통형 고체산화물 연료전지 기술개발)

  • Song, Rak-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.373-380
    • /
    • 2001
  • Solid Oxide Fuel Cells (SOFCs) have received considerable attention because of the advantages of high effiiciency, low pollution, cogeneration application and excellent integration with simplified reformer In this paper, we reported development of anode-tubular SOFC by wet process. For making tubular cell, Ni-cermet YSZ anode tube was fabricated using extrusion process, and YSZ electrolyte layer and LSM-YSZ composite, LSM, LSCF cathode layer were coated onto the anode supported tube using slurry dipping process and sintered by co-firing process. By using this tubular cell, we fabricated single cell consisted of the various cathode layers and 4 cell stack with an effective area of $75 cm^2$ per single cell, and evaluated their performance characteristics.

  • PDF

Modeling of two-cell thin-walled beams using variational asymptotic methods (변분적 점근법을 사용한 이중 세포를 갖는 박벽보의 모델링)

  • Park, Jae-Sang;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.198-201
    • /
    • 2005
  • This study investigates the difference between single-cell and multi-cell cross-sections of thin-walled beams. The variationally and asymptotically consistent theory is used in order to model the two-cell thin- walled beam. The theory is based on an asymptotical analysis of two-dimensional shell energy. In addition, the method allows for the development of closed-form expressions for the displacement, stress field and beam stiffness coefficients. The numerical results show the difference between the cross-sectional stiffness of single-cell and that of multi-cell.

  • PDF

The development of mobile fuel cell (모바일용 연료전지 개발)

  • Lee K.I.;Park M.S.;Cho Y.H.;Cho Y.H.;Sung Y.E.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.549-550
    • /
    • 2006
  • Mobile fuel cell is highlighted in these days because mobile fuel cell can contain more energy than existing batteries. Nowadays mobile devices like cellular phone, PMP(portable multi-media player), notebook, and etc. need more energy, But existing batteries like Li-ion or Ni-MH batteries are not going to satisfy such demands. In this paper, mobile fuel cell is developed. Its size is 50*70*8mm and it is made of aluminium plates. The fuel cell type is PEM and the fuel is pure hydrogen and oxygen.

  • PDF