• 제목/요약/키워드: Single Blade

검색결과 191건 처리시간 0.023초

회전하는 터빈 블레이드에서의 열전달 특성 (Detailed Heat Transfer Characteristics on Rotating Turbine Blade)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구 (A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan)

  • 노수혁;조강래
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.

Aerodynamic Analysis of Helicopter Rotor by Using a Time-Domain Panel Method

  • Kim, J.K.;Lee, S.W.;Cho, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.638-642
    • /
    • 2008
  • Computational methods based on the solution of the flow model are widely used for the analysis of lowspeed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung blade and present results were compared with the experimental data and the other numerical results in the single blade condition and two blade condition. This isolated rotor blade model consisted of a two bladed rotor with untwisted, rectangular planform blade. Computed flow-field solutions were presented for various section of the blade in the hovering mode.

  • PDF

유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석 (Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis)

  • 윤완노;김준성
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

Numerical studies on cavitation behavior in impeller of centrifugal pump with different blade profiles

  • Song, Pengfei;Zhang, Yongxue;Xu, Cong;Zhou, Xin;Zhang, Jinya
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.94-101
    • /
    • 2015
  • To investigate the influence of blade profiles on cavitation behavior in impeller of centrifugal pump, a centrifugal pump with five different blade profiles impellers are studied numerically. The impellers with five different blade profiles (single arc, double arcs, triple arcs, logarithmic spiral and linear-variable angle spiral) were designed by the in-house hydraulic design code using geometric parameters of IS 150-125-125 centrifugal pump. The experiments of the centrifugal pump have been conducted to verify numerical simulation model. The numerical results show that the blade profile lines has a weak effect on cavitation inception near blade inlet edge position, however it has the key effect on the development of sheet cavitation in impeller, and also influences the distribution of sheet cavitation in impeller channels. A slight changing of blade setting angle will induce significant difference of cavitation in impeller. The sharp changing of impeller blade setting angle causes obvious cavitation region separation near the impeller inlet close to blade suction surface and much more flow loss. The centrifugal pump with blade profile of setting angle gently changing (logarithmic spiral) has the super cavitation performance, which means smaller critical cavitation number and lower vapor cavity volume fraction at the same conditions.

SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가 (The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen)

  • 강지웅
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구 (A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight)

  • 정성남;김경남;김승조
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

덕트형상에 따른 동축반전 로터블레이드 주위의 전산유동해석 (Computational Flow Analysis around Coaxial Rotor Blades with Various Ducts)

  • 김수연;최종욱;김성초
    • 한국가시화정보학회지
    • /
    • 제8권2호
    • /
    • pp.23-30
    • /
    • 2010
  • Regarding the aircrafts with a rotor blade system, the miniaturization of them is limited due to the rotor blade length and the tail rotor system. To miniaturize an aircraft, an equipment is required that increases thrust and also shortens the length of the rotor blade. The present study will conduct the flow analysis for miniaturizing the aircraft by applying a duct to the coaxial rotor blade system without tail rotor. First, the verification on the calculated results was conducted through the computational flow analysis on the coaxial rotor blade system without a duct. Then, the flow analysis for the coaxial rotor blade systems was performed including Ka-60 duct, Single duct, Twin duct, and Double duct, respectively. From the numerical results, the thrust coefficient appeared higher with the duct than without a duct for the coaxial rotor blade system. Especially, in the case of Double duct, the thrust was improved due to the increase of incoming flow and the extension of the wake area. These results will be used as the basic concepts for miniaturizing the aircraft with the rotor blade system. The flow analysis on the coaxial rotor blade system including the fuselage remains as a future work.

입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (I) - 블레이드 끝단면 - (Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (I) - Blade Tip -)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제31권4호
    • /
    • pp.349-356
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the tip of the rotating turbine blade with various incoming flow incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with a mean tip clearance of 2.5% of the blade chord. The incoming flow Reynolds number is $1.5{\times}10^5$ at design condition. To examine the effect of off-design condition, the experiments with various incidence angles ranging between $-15^{\circ}$ and $+7{\circ}$ were conducted. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results indicated that the incidence angle strongly affects the behavior of tip leakage flow around the blade tip and consequently plays an important role in determining heat transfer characteristics on the tip. For negative incidence angles, the heat/mass transfer in the upstream region on the tip decreases by up to 20%. On the contrary, for positive incidence angles, much higher heat transfer coefficients are observed even with small increase of incidence angle.