• Title/Summary/Keyword: Simultaneous measurement

Search Result 484, Processing Time 0.027 seconds

Corrosion of Quartz Crystal Marine Sensors in Sea Water (항만센서용 수정진동자의 해수에 의한 부식)

  • 최광재;장상목;김영한
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the corrosion process of an aluminum surface of a quartz crystal for marine sensor by sea water. A quartz crystal having 2000 $\AA$ of aluminum layer is installed in a specially designed cell and is in contact with sea water imitated electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrometer(EDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of sensor surface.

  • PDF

Analysis of Catalytic Reaction Characteristics of NGV Exhaust Gas by FTIR Spectroscopy (FTIR법에 의한 천연가스자동차 배기의 촉매반응특성 분석)

  • Choi, B.C.;Kim, Y.K.;Lim, M.T.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.218-225
    • /
    • 1998
  • FTIR spectroscopy, useful technology for simultaneous and continuous measurement of the various components of the automotive exhaust gas, is utilized to investigate catalytic reaction charactristics of methane and a few unregulated exhaust emissions of NGV. Major findings are (1) catalytic reaction characteristics of methane measured in unsteady states of varying temperature are similar to those measured in steady states, (2) about 24 % of NO was oxidized to $NO_2$ as soon as they encounter catalysts, (3) study of formaldehyde suffers from difficulties in measurement due to the proximity in wavenumber of formaldehyde and methane, and requires an analyzer of higher resolution and accuracy than used in this study.

  • PDF

Effect of Chuna (Shoulder Traction) Treatment on Frozen Shoulder During Korean Medical Treatment

  • Jo, Na Young;Yeo, In Ho;Jung, Se Ho;Sung, Hee Jin;Lee, Cham Geol;Lee, Eun Yong;Roh, Jeong Du
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • Objectives : Through an analysis of the previous studies, It is estimated that Chuna(shoulder traction) is effective in reducing the pain and increasing motion range of shoulder joint of the patient. So this study is to investigate the effects of Chuna(shoulder traction) on frozen shoulder. Methods : After treated with acupuncture and electro stimulating therapy, the subjects were measured list of measurement. And then treated with Chuna(shoulder traction) therapy, the subjects were measured list of measurement again. All treatment was performed by the same doctor who is a highly qualified about Chuna(shoulder traction). Chuna(shoulder traction) treatment takes 15 minutes. Three kind of Chuna(shoulder traction) therapy were performed for 5 minutes each. Depending on the degree of the subject's pain, treatment strength was adjusted. Results : - Chuna simultaneous treatment group, shoulder joint range of flexion, extension, abduction, adduction, external rotation and internal rotation movement improved statistically significant. - Chuna simultaneous and acupuncture treatment group, visual analogue scale(VAS) scores of two groups decreased statistically significant. Conclusions : The result suggests that Chuna(shoulder traction) can be effective to recover range of motion and reduce pain on patients with frozen shoulder.

Simultaneous Measurements of the Loss Tangent of Rutile ($TiO_2$) and the Microwave Surface Resistance of $YBa_2Cu_3O_{7-{\delta}}$ Films using Two Resonant Modes of Rutile -loaded cavity Resonator (루타일이 삽입된 유전체 공진기의 두 공진 모드를 이용한 루타일의 유전손실과 $YBa_2Cu_3O_{7-{\delta}}$ 박막의 마이크로파 표면저항 측정)

  • Lim, J.;Lee, J.H.;Kim, M.J.;Hur, J.;Lee, S.Y.
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.137-143
    • /
    • 2003
  • In measuring the microwave surface resistance of high-Tc superconductor (HTS) films using the dielectric-loaded cavity resonator method, one of the most important factors that limit the measurement sensitivity is the measurement error in the loss tangent ($tan\delta$) of the dielectric rod placed inside the cavity. We have measured the effective surface resistance ( $R_{S}$ $^{eff}$) of$ YBa_2$$_Cu3$$_{7-{\delta}}$ (YBCO) films and the $tan\delta$ of rutile ($TiO_2$) using the 'two-tone'method suggested by Kobayashi et at. [IEEE, MTT-S Digest, 495, (2001)], which enables simultaneous measurements of both the $R_{S}$ $^{eff}$ fof HTS films and the $tan\delta$ of the rutile with high sensitivity. A rutile-loaded cavity resonator with the $TE_{012}$ and $TE_{021}$ resonant frequencies at 13.67 - 14.01 GHz is used for this purpose. At temperatures where the two modes do not couple with other modes, the $R_{S}$ $^{eff}$ of YBCO films and $tan\delta$ of rutile measured by the two-tone method appear to match well with the corresponding values measured using the reported $tan\delta$ values of sapphire within 10 %. Usefulness of the 'two-tone' method for microwave characterization of HTS films and dielectrics is discussed.d.ielectrics is discussed.ussed.

  • PDF

Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air (부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.352-356
    • /
    • 2008
  • In this study of lifted hydrogen jet with coaxial air, we have experimentally studied the characteristics of stabilization point in turbulent diffusion flames. The objectives are to present the phenomenon of a liftoff height decreasing as increasing fuel velocity and to analyse the flame structure and behavior including liftoff mechanisms. The fuel jet exit velocity was changed from 100 up to 300 m/s and a coaxial air velocity was fixed at 16 m/s with a coflow air less than 0.1 m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. It has been suggested that the stabilization of lifted hydrogen diffusion flames was correlated with a turbulent intensity, $S_t{\sim}u^{\prime}$, and jet Reynolds number, $S_t{\sim}Re^{0.017}_{jet}$.

Raman Lidar for the Measurement of Temperature, Water Vapor, and Aerosol in Beijing in the Winter of 2014

  • Tan, Min;Shang, Zhen;Xie, Chenbo;Ma, Hui;Deng, Qian;Tian, Xiaomin;Zhuang, Peng;Zhang, Zhanye;Wang, Yingjian
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • To measure atmospheric temperature, water vapor, and aerosol simultaneously, an efficient multi-function Raman lidar using an ultraviolet-wavelength laser has been developed. A high-performance spectroscopic box that utilizes multicavity interference filters, mounted sequentially at small angles of incidence, is used to separate the lidar return signals at different wavelengths, and to extract the signals with high efficiency. The external experiments are carried out for simultaneous detection of atmospheric temperature, water vapor, and aerosol extinction coefficient in Beijing, under clear and hazy weather conditions. The vertical profiles of temperature, water vapor, and aerosol extinction coefficient are analyzed. The results show that for an integration time of 5 min and laser energy of 200 mJ, the mean deviation between measurements obtained by lidar and radiosonde is small, and the overall trend is similar. The statistical temperature error for nighttime is below 1 K up to a height of 6.2 km under clear weather conditions, and up to a height of 2.5 km under slightly hazy weather conditions, with 5 min of observation time. An effective range for simultaneous detection of temperature and water vapor of up to 10 km is achieved. The temperature-inversion layer is found in the low troposphere. Continuous observations verify the reliability of Raman lidar to achieve real-time measurement of atmospheric parameters in the troposphere.

A Method for Simultaneous Measurement of Air Kerma, Half Value Layer and Tube Potential in Quality Control Procedure of Diagnostic x ray units

  • Katoh, Tsuguhisa;Saitoh, Hidetoshi;Ohtani, Hiroki;Negishi, Tooru;Myojoyama, Atsushi;Ohno, Yuusuke;Sasaki, Takehito
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.294-297
    • /
    • 2002
  • For the quality control procedure of diagnostic x ray units, a method for simultaneous measurement of air kerma, half value layer and tube potential was developed utilizing a computed radiography system for intraoral radiography and film badge case. The response of average pixel values under the windows were calibrated by x rays generated at tube potentials from 40 to 140 kV with filtration from 1.5 to 3.7 mmAl. The calibration curves for half value layer and tube potential were derived as functions of attenuation factors by the 1.4 mmAl filter and the 0.2 mmCu filter. The energy dependency of the open window response was corrected by the calibration factor as a function of the attenuation factor by the 1.4 mmAl filter. The uncertainty of the estimated half value layer, tube potential and air kerma were 0.2 mmAl, 3.6 % and 5 %, respectively. It was thus suggested that this system could be applied to quality control program to detect the variation of working condition of x ray units in clinical use.

  • PDF

Simultaneous Measurement of Strain and Damage Signal in Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh, Jong-In;Bang, Hyung-Joon;Kim, Chun-Gon;Hong, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.43-50
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal a fiber Bragg grating sensor system with a dual demodulator was proposed. The dual demodulator is composed of a demodulator using a tunable Fabry-Perot filter measuring the low-frequency signal with large magnitude such as strain and the other using a passive Mach-Zehnder interferometer detecting the high-frequency signal with small amplitude such as impact or damage signal. Using the proposed fiber Bragg grating sensor system, both the strain and damage signals of a cross-ply laminated composite beam under tensile loading were simultaneously measured. The strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were accompanied with vibration at a maximum frequency of several hundreds of kilohertz at the instant of matrix crack propagation in the 90 degree layer in composite beam.

Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh Jong-In;Bang Hyung-Joon;Kim Chun-Gon;Hong Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter can measure low-frequency signal such as strain and the other demodulator using a passive Mach-Zehnder interferometer can detect high-frequency signal such as damage signal or impact signal. Using a proposed fiber Bragg grating sensor system, both the strain and damage signal of a cross-ply laminated composite beam under tensile loading were simultaneously measured. Analysis of the strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were induced due to transverse crack propagation in the 90 degree layer of composite beam and vibration with a maximum frequency of several hundreds of kilohertz was generated.

  • PDF

Nitrogen Dilution Effects on Liftoff Flame Stability in Non-premixed Turbulent Hydrogen Jet with Coaxial Air (질소희석이 부상된 수소 난류확산화염의 화염안정성에 미치는 영향)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.393-396
    • /
    • 2008
  • The study of nitrogen dilution effect on flame stability was experimentally investigated in non-premixed turbulent lifted hydrogen jet with coaxial air. hydrogen gas was used as a fuel and coaxial air was injected to make flame liftoff. And both of the fuel jet and coaxial air velocity were fixed as $u_F$=200 m/s and $u_A$=16 m/s, while nitrogen diluents mole fraction was varied from 0 to 0.2. For the analysis of flame structure and flame stabilization mechanism, the simultaneous measurement of PIV/OH PLIF had been performed. It was found that the turbulent flame propagation velocity increased as decreasing of nitrogen mole fraction. We concluded that the turbulent flame propagation velocity was expressed as a function of turbulent intensity, even though the mole fraction of nitrogen diluents gas was changed.

  • PDF