• 제목/요약/키워드: Simultaneous localization and mapping algorithm

검색결과 52건 처리시간 0.031초

ETLi: Efficiently annotated traffic LiDAR dataset using incremental and suggestive annotation

  • Kang, Jungyu;Han, Seung-Jun;Kim, Nahyeon;Min, Kyoung-Wook
    • ETRI Journal
    • /
    • 제43권4호
    • /
    • pp.630-639
    • /
    • 2021
  • Autonomous driving requires a computerized perception of the environment for safety and machine-learning evaluation. Recognizing semantic information is difficult, as the objective is to instantly recognize and distinguish items in the environment. Training a model with real-time semantic capability and high reliability requires extensive and specialized datasets. However, generalized datasets are unavailable and are typically difficult to construct for specific tasks. Hence, a light detection and ranging semantic dataset suitable for semantic simultaneous localization and mapping and specialized for autonomous driving is proposed. This dataset is provided in a form that can be easily used by users familiar with existing two-dimensional image datasets, and it contains various weather and light conditions collected from a complex and diverse practical setting. An incremental and suggestive annotation routine is proposed to improve annotation efficiency. A model is trained to simultaneously predict segmentation labels and suggest class-representative frames. Experimental results demonstrate that the proposed algorithm yields a more efficient dataset than uniformly sampled datasets.

Visual SLAM의 건설현장 실내 측위 활용성 분석 (Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site)

  • 김태진;박지원;이병민;배강민;윤세빈;김태훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

격자위상혼합지도방식과 적응제어 알고리즘을 이용한 SLAM 성능 향상 (Increasing the SLAM performance by integrating the grid-topology based hybrid map and the adaptive control method)

  • 김수현;양태규
    • 전기학회논문지
    • /
    • 제58권8호
    • /
    • pp.1605-1614
    • /
    • 2009
  • The technique of simultaneous localization and mapping is the most important research topic in mobile robotics. In the process of building a map in its available memory, the robot memorizes environmental information on the plane of grid or topology. Several approaches about this technique have been presented so far, but most of them use mapping technique as either grid-based map or topology-based map. In this paper we propose a frame of solving the SLAM problem of linking map covering, map building, localizing, path finding and obstacle avoiding in an automatic way. Some algorithms integrating grid and topology map are considered and this make the SLAM performance faster and more stable. The proposed scheme uses an occupancy grid map in representing the environment and then formulate topological information in path finding by A${\ast}$ algorithm. The mapping process is shown and the shortest path is decided on grid based map. Then topological information such as direction, distance is calculated on simulator program then transmitted to robot hardware devices. The localization process and the dynamic obstacle avoidance can be accomplished by topological information on grid map. While mapping and moving, pose of the robot is adjusted for correct localization by implementing additional pixel based image layer and tracking some features. A laser range finer and electronic compass systems are implemented on the mobile robot and DC geared motor wheels are individually controlled by the adaptive PD control method. Simulations and experimental results show its performance and efficiency of the proposed scheme are increased.

대칭모형 기반 SLAM : M-SLAM (Symmetrical model based SLAM : M-SLAM)

  • 오정석;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.463-468
    • /
    • 2010
  • 미지의 영역에서 작업을 수행하고자 하는 이동로봇은 주변의 지도가 없을 뿐만 아니라 자신의 위치도 알 수 없다. 이러한 환경의 극복을 위해 가장 많이 쓰이는 방법이 SLAM(Simultaneous Localization And Mapping)이다. SLAM 분야에서 가장 많이 쓰이는 방법은 EKF (Extended Kalman Filter) 기반의 SLAM이다. 최적의 센서 융합 기법이지만 odometeric error 등을 보상하기 위해서는 복잡한 과정이 점차 증가하게 된다. 사람은 SLAM 방식을 이용하여 낯선 장소에서 마음속의 지도를 쉽게 작성하지만 로봇의 경우 SLAM을 수행하는 것은 매우 어렵고 시간이 오래 걸린다는 단점이 생기는 것이 다. 이러한 단점의 보완을 위하여 본 논문에서는 대칭모형 SLAM(M-SLAM)을 제안한다. M-SLAM은 대칭에 사용할 모형을 미리 정하고 센서로 받아들인 데이터를 모형과 비교하여 대칭된 모형을 맵에 적용시켜서 작업의 양을 줄이는 방법이다. M-SLAM은 적은 특징점을 이용하여 선택된 대칭 도형과의 유사성 판별을 이용하는 방법이므로 특징점이 적은 거리센서에 사용하기 적합한 특성을 가지고 있다고 할 수 있다. 특징점이 적어도 된다는 장점은 SLAM의 시간을 크게 줄여 줄수 있다.

2차원 라이다와 상업용 영상-관성 기반 주행 거리 기록계를 이용한 3차원 점 구름 지도 작성 시스템 개발 (Development of 3D Point Cloud Mapping System Using 2D LiDAR and Commercial Visual-inertial Odometry Sensor)

  • 문종식;이병윤
    • 대한임베디드공학회논문지
    • /
    • 제16권3호
    • /
    • pp.107-111
    • /
    • 2021
  • A 3D point cloud map is an essential elements in various fields, including precise autonomous navigation system. However, generating a 3D point cloud map using a single sensor has limitations due to the price of expensive sensor. In order to solve this problem, we propose a precise 3D mapping system using low-cost sensor fusion. Generating a point cloud map requires the process of estimating the current position and attitude, and describing the surrounding environment. In this paper, we utilized a commercial visual-inertial odometry sensor to estimate the current position and attitude states. Based on the state value, the 2D LiDAR measurement values describe the surrounding environment to create a point cloud map. To analyze the performance of the proposed algorithm, we compared the performance of the proposed algorithm and the 3D LiDAR-based SLAM (simultaneous localization and mapping) algorithm. As a result, it was confirmed that a precise 3D point cloud map can be generated with the low-cost sensor fusion system proposed in this paper.

이동 장애물을 고려한 DQN 기반의 Mapless Navigation 및 학습 시간 단축 알고리즘 (Mapless Navigation Based on DQN Considering Moving Obstacles, and Training Time Reduction Algorithm)

  • 윤범진;유승열
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.377-383
    • /
    • 2021
  • 최근 4차 산업혁명에 따라 공장, 물류창고, 서비스영역에서 유연한 물류이송을 위한 자율 이동형 모바일 로봇의 사용이 증가하고 있다. 대규모 공장에서는 Simultaneous Localization and Mapping(SLAM)을 수행하기 위하여 많은 수작업이 필요하기 때문에 개선된 모바일 로봇 자율 주행에 대한 필요성이 대두되고 있다. 이에 따라 본 논문에서는 고정 및 이동 장애물을 피해 최적의 경로로 주행하는 Mapless Navigation에 대한 알고리즘을 제안하고자 한다. Mapless Navigation을 위하여 Deep Q Network(DQN)을 통해 고정 및 이동 장애물을 회피하도록 학습하였고 두 종류의 장애물 회피에 대하여 각각 정확도 90%, 93%를 얻었다. 또한 DQN은 많은 학습 시간을 필요로 하는데 이를 단축하기 위한 목표의 크기 변화 알고리즘을 제안하고 이를 시뮬레이션을 통하여 단축된 학습시간과 장애물 회피 성능을 확인하였다.

SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현 (Implementation of Camera-Based Autonomous Driving Vehicle for Indoor Delivery using SLAM)

  • 김유중;강준우;윤정빈;이유빈;백수황
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.687-694
    • /
    • 2022
  • 본 논문에서는 Visual 동시적 위치추정 및 지도작성(SLAM : Simultaneous Localization and Mapping)기술을 응용하여 실내에서 생성된 SLAM 맵을 기반으로 지정된 목적지에 물건을 배달하는 자율주행 차량 플랫폼을 제안하였다. 실내에서 SLAM 맵을 생성하기 위해 소형 자율주행 차량 플랫폼의 상단에 SLAM 맵 생성을 위한 심도 카메라를 설치하고 SLAM 맵 속에서의 정확한 위치추정을 하기 위해 추적 카메라를 장착하여 구현하였다. 또한, 목적지의 표찰을 인식하기 위해 합성곱 신경망(CNN : Convolutional neural network)을 사용하여 목적지에 정확하게 도착할 수 있도록 주행 알고리즘을 적용하여 설계하였다. 실내 배송 자율주행 차량을 실제로 제작하였고 SLAM 맵의 정확도 확인과 CNN을 통한 목적지 표찰 인식 실험을 수행하였다. 결과적으로 표찰 인식의 성공률을 향상시켜 구현한 실내 배송용 자율주행 차량의 활용 적합성 여부를 확인하였다.

다중 동적객체의 실시간 독립추적을 통한 프로젝션 증강가시화 (Real-Time Individual Tracking of Multiple Moving Objects for Projection based Augmented Visualization)

  • 이준형;김기홍
    • 디지털융복합연구
    • /
    • 제12권11호
    • /
    • pp.357-364
    • /
    • 2014
  • 기존 증강현실 콘텐츠 경우 고정된 마커를 빠르게 이동시키면 가시화에 끊김 현상이 발생하게 된다. 따라서 동적 마커를 사용할 경우에도 콘텐츠가 끊어짐 없이 사용자에게 제공되는 방법이 요구된다. 카메라에 입력된 한 장의 이미지 내에 두 개 이상의 마커가 존재할 경우 기존의 이미지 기반 마커와 SLAM(Simultaneous Localization & Mapping) 방식을 통해서는 각각의 마커를 동시에 추적할 수 없다. 본 논문은 각 마커 위에 정합된 객체들 간의 상호작용은 불가능하다는 점을 극복함은 물론, 빠르게 움직이는 마커를 실시간으로 추적하여 그 위에 원하는 객체를 정확하게 증강 가시화하는 방법론을 제안한다. 이를 위해, 주행형 로봇과 시범 콘텐츠의 가상로봇을 동기화하여, 주행형 로봇 상에 콘텐츠가 가시화되도록 하였다. 그리고 카메라 한 대로 다중 동적객체를 추적하여 서로 상호작용하는 기술을 제안하였다. 결과적으로 가상로봇과 실제로봇을 연동하여 상호작용하도록 함으로써 실시간 동적객체 추적 및 가시화 기술의 유용성을 검증하였다.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures

  • Seo, Dae-Sung;Won, Dae-Heui;Yang, Gwang-Woong;Choi, Moo-Sung;Kwon, Sang-Ju;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1797-1801
    • /
    • 2005
  • SLAM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important issues in mobile robot research. Until now expensive sensors like a laser sensor have been used for the mobile robot's localization. Currently, as the RFID reader devices like antennas and RFID tags become increasingly smaller and cheaper, the proliferation of RFID technology is advancing rapidly. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used to identify the mobile robot's location on the smart floor. We discuss a number of challenges related to this approach, such as RFID tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, because the reader just can senses whether a RFID tag is in its sensing area, the localization error occurs as much as the sensing area of the RFID reader. And, until now, there is no study to estimate the pose of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. We use the Markov localization algorithm to reduce the location(X,Y) error and the Kalman Filter algorithm to estimate the pose(q) of a mobile robot. We applied these algorithms in our experiment with our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors like odometers and RFID tags for the mobile robot's localization on the smart floor.

  • PDF

이동 로봇 주행을 위한 이미지 매칭에 기반한 레이저 영상 SLAM (Laser Image SLAM based on Image Matching for Navigation of a Mobile Robot)

  • 최윤원;김경동;최정원;이석규
    • 한국정밀공학회지
    • /
    • 제30권2호
    • /
    • pp.177-184
    • /
    • 2013
  • This paper proposes an enhanced Simultaneous Localization and Mapping (SLAM) algorithm based on matching laser image and Extended Kalman Filter (EKF). In general, laser information is one of the most efficient data for localization of mobile robots and is more accurate than encoder data. For localization of a mobile robot, moving distance information of a robot is often obtained by encoders and distance information from the robot to landmarks is estimated by various sensors. Though encoder has high resolution, it is difficult to estimate current position of a robot precisely because of encoder error caused by slip and backlash of wheels. In this paper, the position and angle of the robot are estimated by comparing laser images obtained from laser scanner with high accuracy. In addition, Speeded Up Robust Features (SURF) is used for extracting feature points at previous laser image and current laser image by comparing feature points. As a result, the moving distance and heading angle are obtained based on information of available points. The experimental results using the proposed laser slam algorithm show effectiveness for the SLAM of robot.