• Title/Summary/Keyword: Simultaneous Hybrid Control

Search Result 28, Processing Time 0.036 seconds

Hybrid Control with Thrusters and Reaction Wheels for Time Optimal Attitude Maneuvers of Spacecraft (위성자세 최소시간 거동을 위한 추력기와 반작용 휠 통합제어)

  • Lee, Byung-Hoon;Lee, Bong-Woon;Oh, Hwa-Suk;Lee, Seon-Ho;Lee, Seung-Wu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1578-1583
    • /
    • 2003
  • Time-Optimal solutions for attitude control with reaction wheels as well as with thrusters are studied. The suggested varying-time-sharing ratio thrusting is found to reduce the maneuvering time enormously. The hybrid control such as sequential hybrid and simultaneous hybrid with reaction wheels and thrusters are considered. The results show that simultaneous hybrid method reduces the maneuver time very much. Spacecraft model is KOrea Multi-Purpose SATellite(KOMPSAT)-II, which is being developed by KARI in KOREA as an agile maneuvering satellite.

  • PDF

Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure (하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

Performance Analysis of a Solid Oxide Fuel Cell/Micro Gas Turbine Hybrid System (고체산화물 연료전지/마이크로 가스터빈 하이브리드 시스템의 성능 해석)

  • Yang, Jin-Sik;Song, Tae-Won;Kim, Jae-Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.273-276
    • /
    • 2005
  • Performance analysis of a solid oxide fuel cell/micro gas turbine hybrid system is conducted at design-point and part-load conditions and its results are discussed in this study. With detailed considerations of the heat and mass transfer phenomena along various flow streams of the SOFC, the analysis based on a quasi-2D model reasonably predicts its performance at the design-point operating conditions. In case of part-load operations, performance of the hybrid system to three different operation modes(fuel only control, speed control, and VIGV control) is compared. It is found that the simultaneous control of both supplied fuel and air to the system with a variable MGT rotational speed mode is the optimum choice for the high performance operation. And then, the dynamic characteristics of a solid oxide fuel cell are briefly introduced.

  • PDF

Hybrid Self-Tuning Control of a Single rod Hydraulic Cylinder with Varying Payload (가변 하중을 갖는 편로드 유압 실린더의 합성 자기동조 제어)

  • Kim, M.S.;Kim, J.T.;Han, K.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.174-181
    • /
    • 1997
  • A proposed hybrid self-tuning control scheme for single rod hydraulic cylinder which has varying loads is presented here. An adaptive controller is developed for the system that use feedforward and P feedback control for simultaneous parameter identification and tracking control. Through experimental results, the performance comparison of the hybrid self-tuning controller with a constant gain P contro- ller clearly shows its superior ability in handling load changes in quiescent states.

  • PDF

Genetic Algorithm and Goal Programming Technique for Simultaneous Optimal Design of Structural Control System (구조-제어시스템의 동시최적설계를 위한 유전자알고리즘 및 Goal Programming 기법)

  • 옥승용;박관순;고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.497-504
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system nay be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

  • PDF

Simultaneous Optimum Design of Hybrid Structural Control System (복합구조제어시스템의 동시최적설계)

  • 박관순;고현무
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.37-43
    • /
    • 2002
  • In this paper, an integrated optimum design method for hybrid structural control system is studied. Not only the distribution and the capacity of passive devices but also those of active devices, and the controllers are treated as design variables in the proposed approach. Multi-objective optimization problem is formulated by using the preference function, which is newly defined in this study. Genetic algorithm is adopted as a numerical searching technique in order to simultaneously find the optimum solutions. The validity of the proposed method is verified through the example designs and the numerical simulations of an earthquake excited multi-degrees-of-freedom structure.

Generation of Adaptive Motion Using Quasi-simultaneous Recognition of Plural Targets

  • Mizushima, T.;Minami, M.;Mae, Y.;Sakamoto, Y.;Song, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.882-887
    • /
    • 2005
  • The paper describes Quasi-simultaneous recognition of plural targets and motion control of robot based on the recognition. The method searches for targets by model-based matching method using the hybrid GA, and the motion of the robot is generated based on the targets' positions on the image. The method is applied to a soccer robot, and targets are a ball, a goal, and an enemy in the experiment. The Experimental results show robustness and reliability of the proposed method.

  • PDF

A Novel Hybrid Sequential Start Control System for Large Inductive Loads

  • Kim, Sang-Kon;Kim, Tae-Kon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.388-394
    • /
    • 2015
  • The inrush current of a large inductive load can be reduced with a soft starter; however, the large inrush current caused by simultaneous bulk starts (SBSs) cannot be effectively reduced. In order to reduce the high inrush current and voltage sag owing to the SBSs of large capacity inductive loads within a power network, a novel hybrid sequential start control system is proposed, implemented on embedded systems, and evaluated with a testbed in this study. From the experimental and simulation results of the proposed control system, the inrush current could be effectively restricted below the maximum current capacity of a power distributing board. Moreover, with the proposed system, power cost typically dictated by the peak power consumption can be fairly reduced, and the quality of the power system connected to the inductive loads can be efficiently increased.

Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

  • Elshiyab, Shareen H;Nawafleh, Noor;Ochsner, Andreas;George, Roy
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2018
  • PURPOSE. The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS. Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between $5^{\circ}C$ and $55^{\circ}C$. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS. All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION. When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments.

Regulation Standard of Fine Particles and Control Techniques of Emission Sources (미세먼지 관리기준과 발생원별 관리방안)

  • Park, Haewoo;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.486-503
    • /
    • 2013
  • This paper has comprehensively reviewed fine dust control technology from emission sources. Owing to the stringent national regulation, domestic industries have made consistent efforts to develop the high efficiency facilities since 1960s. In these days, harmful particulate pollutants including dioxins and PAHs as well as $PM_{2.5}$ are also of critical interests in government and civic groups. In addition, simultaneous treatment of gas and particles is being widely studied. It is believed that hybrid facilities which integrate a few advanced equipment may meet the atmospheric guidelines.