• Title/Summary/Keyword: Simulink model

Search Result 555, Processing Time 0.025 seconds

Development of Simulation Model for Trajectory Tracking on Hydraulic System (유압시스템의 궤적 추종 시뮬레이션 모델 개발)

  • Choi, Jong-Hwan
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.61-66
    • /
    • 2008
  • The hydraulic system have been used much in a heavy machine which high power source is desired. In the case of the heavy press machine and the injection molding machine, the use of the hydraulic power is essential especially for increasing productivity and getting the good products. Because the hydraulic circuit is very complex and the system parameters are uncertain, the development of the simulation model for hydraulic system is not easy in the heavy machine. In this case, Many researchers have used a commercial program for analysis and development in a major field of study. In this paper, the aim is to develop the simulation model of the hydraulic system with various commercial program for trajectory tracking. And adaptive control method is applied to the simulation model for the trajectory tracking of a cylinder motion. Load on the cylinder is modeled in ADAMS program, the hydraulic circuit including pump, spool valve and cylinder is modeled in AMESim program and a controller is designed in MatLab/simulink program. The suggested model is applied for the tracking of a cylinder motion, and through computer simulation, its trajectory tracking performance is illustrated.

  • PDF

Development of the Improved Dynamic Model of the Supercapacitor Considering Self-Discharge (자연방전을 고려한 개선된 슈퍼커패시터의 동특성 모델 개발)

  • Kim, Sang-Hyun;Lee, Kyo-Beum;Choi, Se-Wan;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.188-196
    • /
    • 2009
  • Due to its high power density, long cycle life and clean nature supercapacitors are widely used for improving the dynamic characteristics of the new and renewable energy sources and extending the battery run-time and life. In this paper improved dynamic model of the supercapacitor is developed by the electrochemical impedance spectroscopy technique. The developed model can be used to accurately estimate the dynamic behaviour of the supercapacitor and calculate the exact capacitance value at a certain state of charges. The model of the supercapacitor in the frequency domain is equivalently transformed into that in the time domain for Matlab/Simulink simulaton. The simulation data shows fine agreements with experimental results, thereby proving the validity and the accuracy of the developed model.

Scott Transformer Modeling using Simulink on the AC Substation (Simulink를 이용한 교류 급전변전소의 스코트변압기 모델링)

  • Kim, Tae-Geun;Park, Young;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2317-2322
    • /
    • 2011
  • In three-phase power, when the power is supplied to the single phase load, there is the unbalance of load in the three-phase power. So the scott transformer is used in the power system to supply a single phase load in three-phase power without the unbalance of loads. Especially, the scott transformer is used in the AC substation of electric railroad. Two single phase transformers are combined by T-wiring in the scott transformer. So, two single phase voltage is provided by differing $90^{\circ}$ phase in three-phase power. The selection of related equipment and correction of protective relay are not easy from characteristic of the scott transformer when shunt and ground faults occur. In this paper, electric model of the scott transformer is suggested and the current of the scott transformer in shunt and ground faults is analyzed. Also, the scott transformer model is demonstrated by using Sinulink.

  • PDF

FPGA Implementation of Frequency Offset Compensation using CORDIC Algorithm in OFDM (CORDIC을 이용한 OFDM 시스템의 주파수 옵셋 제거 회로의 FPGA구현)

  • Lee, Mi-Jin;Yoon, Mi-Kyung;Cai, Yu-Qing;Byon, Kun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.363-366
    • /
    • 2007
  • This paper evaluated the performance of circuit for compensate the frequency offset in OFDM using Simulink and designed a System Generator model for FPGA implementation. System Generator Model generated HDL code and RTL schematic. Also, evaluate the performance through Hardware Co-simulation, and investigated the result of timing analysis and resource estimation.

  • PDF

Improved reactor regulating system logical architecture using genetic algorithm

  • Shim, Hyo-Sub;Jung, Jae-Chun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1696-1710
    • /
    • 2017
  • An improved Reactor Regulating System (RRS) logic architecture, which is combined with genetic algorithm (GA), is implemented in this work. It is devised to provide an optimal solution to the current RRS. The current system works desirably and has contributed to safe and stable nuclear power plant operation. However, during the ascent and descent section of the reactor power, the RRS output reveals a relatively high steady-state error, and the output also carries a considerable level of overshoot. In an attempt to consolidate conservatism and minimize the error, this work proposes to apply GA to RRS and suggests reconfiguring the system. Prior to the use of GA, reverse engineering is implemented to build a Simulink-based RRS model. Reengineering is followed to produce a newly configured RRS to generate an output that has a reduced steady-state error and diminished overshoot level. A full-scope APR1400 simulator is used to examine the dynamic behaviors of RRS and to build the RRS Simulink model.

The Research on the Modeling and Parameter Optimization of the EV Battery (전기자동차 배터리 모델링 및 파라미터 최적화 기법 연구)

  • Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • This paper presents the methods for the modeling and parameter optimization of the electric vehicle battery. The state variables of the battery are defined, and the test methods for battery parameters are presented. The state-space equation, which consists of four state variables, and the output equation, which is a combination of to-be-determined parameters, are shown. The parameter optimization method is the key point of this study. The least square of the modeling error can be used as an initial value of the multivariable function. It is equivalent to find the minimum value of the error function to obtain optimal parameters from multivariable function. The SIMULINK model is presented, and the 10-hour full operational range test results are shown to verify the performance of the model. The modeling error for 25 degrees is approximately 1% for full operational ranges. The comments to enhance modeling accuracy are shown in the conclusion.

Application Software Modeling and Integration Methodology using AUTOSAR-ready Light Software Architecture (AUTOSAR 대응 경량화 소프트웨어 아키텍처를 이용한 어플리케이션 소프트웨어 모델링 및 통합 방법)

  • Park, In-Seok;Lee, Woo-Taik;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.117-125
    • /
    • 2012
  • This paper describes a model-based software development methodology for AUTOSAR-ready light software architecture(AUTOSAR-Lite). The proposed methodology briefly represents an application software modeling technique using Matlab/Simulink. Using the proposed technique, application software architecture elements (e.g. software components, runnables, and interfaces) and functional behaviors can be designed in a single modeling environment. From the designed model, the codes of application software is automatically generated using Real-Time Workshop Embedded Coder. The generated application software is easily integrated with hand-coded basic software using the proposed method. In order to evaluate the proposed methodology, a diesel engine management system for a passenger car was employed as a case study. Based on the methodology, 8 atomic software components and 52 runnables are successfully developed, and they are evaluated by engine experiments. From this case study, AUTOSAR compatible model-based application software was successfully developed, and the effectiveness of the proposed methodology was evaluated.

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.

A Study on Power Characteristic of Electric Motorcycle using ASM (ASM을 이용한 전기 이륜차 동력 특성 해석에 관한 연구)

  • Lee, Taehyung;Kim, Byeongwoo;Kim, Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.58-65
    • /
    • 2013
  • In this paper, we propose that a model based design for an electric motor cycle system using ASM (Automotive Simulation Models). Before prototyping a realistic electric motorcycle, a reliable simulation program is required to test the capacities of the power sources and optimize the parameters of an electric motorcycle. Because ASM is based on Simulink, we can design the drivetrain and powertrain of the vehicle model systems easily. To verify the electric motorcycle system analysis of design parameters such as max power, capacity, state of charge and slope angle is carried out by the simulation and experimental method. The predicted results by the development model were in good agreement with the experimentally obtained results. Therefore, the proposed electric motorcycle model can effectively reduce the expenses during the designing of an electric motorcycle system.

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems