• Title/Summary/Keyword: Simulator-CT

Search Result 80, Processing Time 0.022 seconds

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Characteristics of Sound Response in Ear Canal of Human and Reproduction of Acoustical Space (인간 이도의 소리응답특성과 음향공간의 재현)

  • Ahn, Tae-Soo;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.842-849
    • /
    • 2011
  • The human ear canal amplifies the sound pressure level at specific frequency bands. The characteristics of the ear canal are very similar to those of curved cylindrical tube. In this study, the characteristics of sound transfer in human ear canal were measured and the acoustical space of ear canal was reproduced from the canal cavity geometry. For the measurement of sound transfer function in ear canal, a probe microphone and a reference microphone were used. The sound transfer functions were measured for 5 human subjects. To reproduce the acoustical space of the ear canal, two kinds of ear simulator were designed. The first one is a straight cylindrical tube type and the other is a real-shape ear of which geometry was taken from a micro-CT scanning of a human ear. The characteristics of the reproduced apparatus were compared with those of the human and a commercial ear simulator, RA0045 of G.R.A.S. Inc. The comparison results show that the developed apparatus well represent the ear canal characteristics in the low frequency, but have limited coincidence in level over high frequency range.

Development of a Simulator for CT-2 Coverage Prediction and Cell Planning by GIS-Based Approach (GIS를 기반으로 한 CT-2 서비스 영역 예측 및 셀설계 시뮬레이터 개발)

  • Im, Jong-Su;Lee, Bong-Seok;Lee, Mun-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1342-1350
    • /
    • 1999
  • A new design procedure for micro cellular coverage prediction is presented here on this paper, which contains a new propagation analysis algorithm based on processing of vector data representing roads and buildings which mainly affect the propagation phenomena in micro-cell environments. The propagation analysis algorithm presented here has been developed to aim at the practical application for micro-cellular systems such as PCS or CE-2. As all the vectors used here are of closed poly lines, i.e., polygons, a simplified ray path search technique can be developed not only to determine if the calculation points are on the road polygons and but also to calculate the amount of blockage by buildings. The result shows a capability of predicting path loss with an RMS error of 5dB or lower.

  • PDF

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

Computed Tomographic Simulation of Craniospinal Irradiation (전산화 단층 촬영 장치를 이용한 뇌척수 조사의 치료 계획)

  • Lee CI;Kim HN;Oh TY;Hwang DS;Park NS;Kye CS;Kim YS
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 1999
  • The aim of this study is to improve the accuracy of field placement and junction between adjacent fields and block shielding through the use of a computed tomography(CT) simulator and virtual simulation. The information was acquired by assessment of Alderson Rando phantom image using CT simulator (I.Q. Xtra - Picker), determination of each field by virtual fluoroscopy of voxel IQ workstation AcQsim and colored critical structures that were obtained by contouring in virtual simulation. And also using a coronal, sagittal and axial view can determine the field and adjacent field gap correctly without calculation during the procedure. With the treatment planning by using the Helax TMS 4.0, the dose in the junction among the adjacent fields and the spinal cord and cribriform plate of the critical structure was evaluated by the dose volume histogram. The pilot image of coronal and sagittal view took about 2minutes and 26minutes to get 100 images. Image translation to the virtual simulation workstation took about 6minutes. Contouring a critical structure such as cribriform plate, spinal cord using a virtual fluoroscopy were eligible to determine a correct field and shielding. The process took about 20 minutes. As the result of the Helax planning, the dose distribution in adjacent field junction was ideal, and the dose level shows almost 100 percentage in the dose volume histogram of the spinal cord and cribriform plate CT simulation can get a correct therapy area due to enhancement of critical structures such as spinal cord and cribriform plate. In addition, using a Spiral CT scanner can be saved a lot of time to plan a simulation therefore this function can reduce difficulties to keep the patient position without any movements to the patient, physician and radiotherapy technician.

  • PDF

The Verification of Dosimetric Characteristics of the 3-D Compensator with the Exit Beam Dose Profile (Exit Beam Dose Profile을 이용한 3차원 보상체의 성능확인)

  • 이상훈;이병용;권수일;김종훈;장혜숙
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.3-17
    • /
    • 1996
  • Dose compensators have been widely used in radiotherapy fields. But, few reliable verification methods have been reported. We have developed the verification method for the evaluation of the effect of dose compensator using exit beam dose profile. The exit beam dose profiles were measured with and without dose compensator. For this purpose X-Omat V films and lead screened cassettes are used and dose distibutions are compared. Phantom data are collected using CT simulator(Picker, AcQ Sim) and compensator information can be obtained from Render Plan 3-D planning System. Aluminum Compensators are generated by computer controlled milling machine. The real dose distribution in the phantom and the exit beam dose profile can be obtained simultaneously with the films in the phantom and the opposite site of the beam. Dose compensations effects for oblique beam, parallel opposing beam and inhomogeneous human phantom can be obtained using above tools. And we could simate those effects with exit beam dose profile using the method that we have developed in this study.

  • PDF

Development of pre-procedure virtual simulation for challenging interventional procedures: an experimental study with clinical application

  • Seong, Hyunyoung;Yun, Daehun;Yoon, Kyung Seob;Kwak, Ji Soo;Koh, Jae Chul
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.403-412
    • /
    • 2022
  • Background: Most pain management techniques for challenging procedures are still performed under the guidance of the C-arm fluoroscope although it is sometimes difficult for even experienced clinicians to understand the modified three-dimensional anatomy as a two-dimensional X-ray image. To overcome these difficulties, the development of a virtual simulator may be helpful. Therefore, in this study, the authors developed a virtual simulator and presented its clinical application cases. Methods: We developed a computer program to simulate the actual environment of the procedure. Computed tomography (CT) Digital Imaging and Communications in Medicine (DICOM) data were used for the simulations. Virtual needle placement was simulated at the most appropriate position for a successful block. Using a virtual C-arm, the authors searched for the position of the C-arm at which the needle was visualized as a point. The positional relationships between the anatomy of the patient and the needle were identified. Results: For the simulations, the CT DICOM data of patients who visited the outpatient clinic was used. When the patients revisited the clinic, images similar to the simulated images were obtained by manipulating the C-arm. Transforaminal epidural injection, which was difficult to perform due to severe spinal deformity, and the challenging procedures of the superior hypogastric plexus block and Gasserian ganglion block, were successfully performed with the help of the simulation. Conclusions: We created a pre-procedural virtual simulation and demonstrated its successful application in patients who are expected to undergo challenging procedures.

A Study of Heterogeneity Corrections for Radiation Treatment Planning (방사선 치료계획 시 불균질 보정에 관한 고찰)

  • Lee, Je-Hee;Kim, Bo-Gyum;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.89-96
    • /
    • 2006
  • Purpose: To study effectiveness of heterogeneity correction of internal-body inhomogeneities and patient positioning immobilizers in dose calculation, using images obtained from CT-Simulator. Materials and Methods: A water phantom($250{\times}250{\times}250mm^3$) was fabricated and, to simulate various inhomogeneity, 1) bone 2) metal 3) contrast media 4) immobilization devices(Head holder/pillow/Vac-lok) were inserted in it. And then, CT scans were peformed. The CT-images were input to Radiation Treatment Planning System(RTPS) and the MUs, to give 100 cGy at 10 cm depth with isocentric standard setup(Field Size=$10{\times}10cm^2$, SAD=100 cm), were calculated for various energies(4, 6, 10 MV X-ray). The calculated MUs based on various CT-images of inhomogeneities were compared and analyzed. Results: Heterogeneity correction factors were compared for different materials. The correction factors were $2.7{\sim}5.3%$ for bone, $2.7{\sim}3.8%$ for metal materials, $0.9{\sim}2.3%$ for contrast media, $0.9{\sim}2.3%$ for Head-holder, $3.5{\sim}6.9%$ for Head holder+pillow, and $0.9{\sim}1.5%$ for Vac-lok. Conclusion: It is revealed that the heterogeneity correction factor calculated from internal-body inhomogeneities have various values and have no consistency. and with increasing number of beam ports, the differences can be reduced to under 1%, so, it can be disregarded. On the other hand, heterogeneity correction from immobilizers must be regarded enough to minimize inaccuracy of dose calculation.

  • PDF