• Title/Summary/Keyword: Simulation-based Weapon System Analysis

Search Result 46, Processing Time 0.025 seconds

A Study of the UML modeling and simulation for an analysis and design of the reconnaissance UAV system (정찰용 무인기 체계 분석/설계를 위한 UML 모델링 및 시뮬레이션 연구)

  • Kim, Cheong-Young;Park, Young-Keun;Lee, Jun-Kyu;Kim, Myun-Yeol;Reu, Tae-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1112-1120
    • /
    • 2008
  • The real-time distributed simulation at the present age concentrates on the construction of a system development environment in order to accomplish a synthetic battlefield environment connected with Live-Virtual-Constructive simulation and to realize the Simulation Based Acquisition which supports the life cycle of weapon system. Accordingly this paper describes the development environment of the UML modeling and simulation which integrates the system analysis and design methods performed during the conceptual design phase of the reconnaissance UAV system development. An integrated framework linked with the UML simulation and X-plane visualization is suggested to efficiently perform the system analysis and design, and finally the implementation contents, the analysis of experiment results and concluding remarks are described.

Simulation Analysis to Optimize the Management of Military Maintenance Facility (군 정비시설 운용 최적화를 위한 시뮬레이션 분석 연구)

  • Kim, Kyung-Rok;Rhee, Jong-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2724-2731
    • /
    • 2014
  • As the future national defense plan of government focus on advanced weapon system, military maintenance facility becomes more important. However, military maintenance facility has been managed by director's experience and simple mathematical calculation until now. Thus, the optimization for the management of military maintenance facility is suggested by more scientistic and logical methods in this study. The study follows the procedure below. First, simulation is designed according to the analysis of military maintenance facility. Second, independent variable and dependent variable are defined for optimization. Independent Variable includes the number of maintenance machine, transportation machine, worker in the details of military maintenance facility operation, and dependent variable involves total maintenance time affected by independent variable. Third, warmup analysis is performed to get warmup period, based on the simulation model. Fourth, the optimal combination is computed with evolution strategy, meta-heuristic, to enhance military maintenance management. By the optimal combination, the management of military maintenance facility can gain the biggest effect against the limited cost. In the future, the multipurpose study, to analyze the military maintenance facility covering various weapon system equipments, will be performed.

A Study on the Effective Method to Producing Data for The ROKA Live Fire Training Range Safety (한국군 실 사격 훈련간 효율적인 안전지대 데이터 구축 방안 연구)

  • Lee, June-Sik;Choi, Bong-Wan;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.64-77
    • /
    • 2015
  • An effective method for produce munitions effectiveness data is to calculate weapon effectiveness indices in the US military's Joint Munitions Effectiveness Manuals (JMEM) and take advantage of the damage evaluation model (GFSM) and weapon Effectiveness Evaluation Model (Matrix Evaluator). However, a study about the Range Safety that can be applied in the live firing exercises is very insufficient in the case of ROK military. The Range Safety program is an element of the US Army Safety Program, and is the program responsible for developing policies and guidance to ensure the safe operation of live-fire ranges. The methodology of Weapon Danger Zone (WDZ) program is based on a combination of weapon modeling/simulation data and actual impact data. Also, each WDZ incorporates a probability distribution function which provides the information necessary to perform a quantitative risk assessment to evaluate the relative risk of an identified profile. A study of method to establish for K-Range Safety data is to develop manuals (pamphlet) will be a standard to ensure the effective and safe fire training at the ROK military education and training and environmental conditions. For example, WDZs are generated with the WDZ tool as part of the RMTK (Range Managers Tool Kit) package. The WDZ tool is a Geographic Information System-based application that is available to operational planners and range safety manager of Army and Marine Corps in both desktop and web-based versions. K-Range Safety Program based on US data is reflected in the Korean terrain by operating environments and training doctrine etc, and the range safety data are made. Thus, verification process on modified variables data is required. K-Range Safety rather than being produced by a single program, is an package safety activities and measures through weapon danger zone tool, SRP (The Sustainable Range Program), manuals, doctrine, terrain, climate, military defence M&S, weapon system development/operational test evaluation and analysis to continuously improving range safety zone. Distribution of this K-range safety pamphlet is available to Army users in electronic media only and is intended for the standing army and army reserve. Also publication and distribution to authorized users for marine corps commands are indicated in the table of allowances for publications. Therefore, this study proposes an efficient K-Range Safety Manual producing to calculate the danger zones that can be applied to the ROK military's live fire training by introducing of US Army weapons danger zone program and Range Safety Manual

Study on Survival Effectiveness of Intelligent System for Warrior Platform by using AWAM (지상무기효과분석모델(AWAM)을 활용한 워리어 플랫폼 지능형 조절 시스템 생존 효과도에 관한 연구)

  • Kwon, Youngjin;Kim, Taeyang;Chae, Je Wook;Kim, Juhee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.277-285
    • /
    • 2020
  • Survivability in a battle field is the most important aspect to the warriors. To analyze the survival effectiveness of warrior platform, the simulation via war-game model is an essential step in advance to the development of platform. In this study, Army Weapon effectiveness Analysis Model(AWAM) was utilized for analysis. Several weapon parameters were adjusted to apply the characteristics of warrior platform in some cases of the defense and survival system. Especially, adjusted triage possibility, probability of kill, fatality and accuracy were employed as parameters in the simulation program to evaluate the survival effectiveness of intelligent system based on the previous researches. In the future battle field or virtual space in the AWAM, the warrior platform intelligent system could react emergency treatment on time by expoiting the bio-information of man at arms. Considering the order of supply priority, special force was selected as operating troops and battle scenario without engagement was selected to measure accurate survival effectiveness. In conclusion, the survivability of defence and survival system of the warrior platform was about 1.47 times higher than that of current system.

A Study of Optimization Approach for GPS Anti-Jamming System's Integration on Military Aircraft Based on the Requirement of Capability (요구성능 기반의 군용 항공기 항재밍 GPS 체계 구축 최적화 방안 연구)

  • Lee, Moongul;Shin, Kisu;Choi, Jaesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.66-83
    • /
    • 2015
  • Global Positioning System(hereafter; GPS) is recently an essential element in the various navigation and weapon delivery systems of military aircraft. However, GPS is vulnerable to the jamming threats since its signal power is very weak. Therefore, ROK defense has been concerning how to resolve this issue and how to integrate these systems needed, and is trying to acquire the proper anti-jamming GPS system. This study is to provide several schemes against the jamming threats effectively. We propose the several processes to analyze the required capability and demonstrate the result's of modeling and simulations(hereafter; M&S) for this integration of military aircraft, and the mathematical programming model for system optimization of military aircraft anti-jamming GPS system on the basis analysis of M&S results which could be considered available budget and the project characteristic. These schemes will be helpful on proper acquisition of these systems and. We are looking forward to contributing to the integration of anti-jamming GPS system of ROK military aircraft.

Parametric Sensitivity Analysis of Markov Process Based RAM Model (Markov Process 기반 RAM 모델에 대한 파라미터 민감도 분석)

  • Kim, Yeong Seok;Hur, Jang Wook
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.44-51
    • /
    • 2018
  • The purpose of RAM analysis in weapon systems is to reduce life cycle costs, along with improving combat readiness by meeting RAM target value. We analyzed the sensitivity of the RAM analysis parameters to the use of the operating system by using the Markov Process based model (MPS, Markov Process Simulation) developed for RAM analysis. A Markov process-based RAM analysis model was developed to analyze the sensitivity of parameters (MTBF, MTTR and ALDT) to the utility of the 81mm mortar. The time required for the application to reach the steady state is about 15,000H, which is about 2 years, and the sensitivity of the parameter is highest for ALDT. In order to improve combat readiness, there is a need for continuous improvement in ALDT.

Environmental Data Management and Supply Plan for Building Synthetic Battlefield Environment of Air Combat Simulation (항공 전투 시뮬레이션의 합성전장환경 구축을 위한 환경 데이터 관리 및 공급 방안)

  • Yang, Ka-Ram;Hwam, Won K.;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.7-14
    • /
    • 2013
  • In this paper, there is a research for providing environmental data to reflect environmental effects to the simulation for the aviation weapon systems by the construction of the synthetic battlefield. The results of the aviation engagement simulation are able to differ by environmental effect. This paper analyzes the real aviation battlefield and designs the synthetic battlefield based on the analysis. In order to construct the designed synthetic battlefield, we collects the real environmental data for the atmosphere and structures the collected data using GIS (Geographic information system interpolation). The main objective of this paper is to design the synthetic battlefield based on the derived environmental factors from the analysis of the real aviation battlefield, and it constructs the designed synthetic battlefield by the collection of real atmosphere data. The constructed synthetic battlefield provides the environmental data which are requested from the distributed simulation system, and it makes the system reflect environmental effects to the simulation.

Military Aircrafts Proper Quantity Decision Model Using Simulation Analysis (시뮬레이션 기법을 적용한 군용 항공기 소요 산정 모형)

  • Kim, Sang-Min;Lee, Moon-Gul
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.151-161
    • /
    • 2014
  • It is very important to evaluate proper acquisition of military aircraft against future threats in our military defense field. In previous studies, the evaluation has been determined in terms of tasking order or weapon power index. These methods compare the combat-effectiveness index and the number of aircraft. However, this study provides simulation analysis of proper quantity decision based on actual operational senarios of military aircraft using System Dynamics. The method reflects the properties of military aircraft operation concepts and considers the rate of failure of main systems on subsystems, as well as repair and crash rates caused by differentials in peacetime and wartime frame.

A Study on the Methodology for Combat Experimental Testing of Future Infantry Units using Simulation (시뮬레이션을 활용한 미래 보병부대 전투실험)

  • Lim, Jong-Won;Choi, Bong-Wan;Yim, Dong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.429-438
    • /
    • 2021
  • Owing to the development of science technology, particularly the smart concept and defense policy factors of the 4th industry, military weapon systems are advanced, and the scientific and operational force is reduced dramatically. The aspect of the future war is characterized by the operation of troops with reduced forces from advanced and scientific weapon systems in an operational area that has expanded more than four times compared to the present. Reflecting on these situational factors, it is necessary to improve combat methods based on the changes in the battlefield environment and advanced weapon systems. In this study, to find a more efficient future combat method in a changing war pattern, this study applied the battle experiment methodology using Vision21 war game model, which is an analytical model used by the army. Finally, this study aimed to verify the future combat method and unit structure. Therefore, the scenario composition and experiment method that reflect the change in the ground operational environment and weapon system was first composed. Subsequently, an analysis method based on the combat effectiveness was applied to verify the effective combat performance method and unit structure of future infantry units.

A Simulation Analysis of R.O.K Navy's Inventory Management Model for Repairable Parts (시뮬레이션을 통한 해군의 복구성 수리부속 재고관리 모형 개발에 관한 연구)

  • Kim, Sungpil;Park, Sunju;Chung, Yerim
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • Recent development in science and technology has modernized the weapon systems of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating, and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need an efficient and scientific method for managing repairable parts. In this study, we propose a simulation model that computes the availability of ship's repairable parts. Our model is based on the METRIC (Multi Echelon Technique Repairable Item Control) model and extends to five sub-models to reflect the realistic situations that arise in the navy, such as planned maintenance, condemnation, lateral transshipment, and cannibalization. We have performed simulations to compute the availability of repairable parts while setting the part-level consistent throughout the five models and carried out two sensitivity analyses. The simulation results show the differences in the part availability in different models. The experiments confirm our claim that ROKN needs an inventory management system that captures the operational characteristics of the navy.