• Title/Summary/Keyword: Simulation-based Weapon System Analysis

Search Result 46, Processing Time 0.021 seconds

Simulation Reconfiguration using Entity Plug-in approach for Weapon System Effectiveness Analysis (무기체계 효과도 분석을 위한 개체 플러그인 방식의 모의 재구성 연구)

  • Kim, Taeyoung
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.49-59
    • /
    • 2018
  • The simulation-based weapon system effectiveness analysis is to support the decision making in the acquisition process of the defense domain. The effectiveness of the weapon system is a complexly influenced indicator from various factors such as environment, doctrine and so on. And the measurement of effectiveness can be defined differently in compliance with major issues in the weapon system. Because of this, the weapon system effectiveness analysis requires the comparative experiment of various alternatives based on the underlying assumption. This paper presents the efficient approach to reconfigure the simulation using the reflection technique. The proposed method contains the recoupling and resetting the simulation entity using DEVS(Discrete EVent System specification) formalism-based dynamic plug-in method. With the proposed method, this paper designs the effectiveness analysis environment that can efficiently handle the various alternatives of the weapon system.

A Study on the Prediction of Weapon System Availability Using Agent Based Modeling and simulation (에이전트 기반 모델링 및 시뮬레이션을 이용한 무기체계 가용도 예측에 관한 연구)

  • Lee, Se-Hoon;Choi, Myoung-Jin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2021
  • Availability is one of the important factor for developing weapon system, because it indicates the mission capability and sustainable life cycle management of weapon system. Recently, as weapon system becomes more advanced and more complex, availability estimation becomes more important to reduce the life cycle cost of weapon system. Modeling and simulation(M&S) is useful method to describe the availability of complex weapon system applying operational environment and maintenance plan. Especially agent based model(ABM) has the strength to describe interactions between agents and environments in complex system. Therefore, this paper presents the availability estimation of weapon system using agent based model. The sample data of part list and reliability analysis is applied to build availability estimation model. User agent and mechanic agent are developed to illustrate the behavior of operation and maintenance using formal specification. Storage reliability is applied to describe failure of each parts. The experimental result shows that this model is quite useful to estimate availability of weapon system. This model may estimate more reasonable availability, if full scale data of weapon system and real field data of operation is provided.

A Study on the Method for Setting the Optimal Maintenance Concept based on RAM-C Using Modeling & Simulation (M&S를 활용한 RAM-C 기반 최적 정비 개념 설정 방안 연구)

  • Kim, Kyungrok;Lee, Kiwon;Jeong, Jun;Cha, Jonghan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.530-538
    • /
    • 2022
  • Recently, the R&D of weapon systems has been strengthened in terms of economic cost management throughout the entire life cycle from performance. This study proposes the method for setting the optimal maintenance concept based on RAM-C in weapon system acquisition stage by calculating the operation & maintenance cost as well as reliability, availability, and maintainability. First, we design a simulation model for analysis of weapon system logistic supportability. In addition, information such as weapon system Part Breakdown Structure, operation & maintenance system, cost, and etc for simulation analysis, is applied. Based on the obtained simulation results, the optimal plan is selected among alternatives designed with various maintenance concepts through normalization and weight setting. It is expected to be of technical help in the application of RAM-C in the weapon system acquisition stage.

Simulation Based Study to Verify the Required Operational Capability of the Para-Observation Munition (관측포탄 작전운용성능 검증을 위한 시뮬레이션 연구)

  • Ha, Set Byul;Kwon, Ojeong;Lee, Youngki;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.87-101
    • /
    • 2021
  • Required Operational Capability(ROC), which means the performance of a weapon system, is determined when estimating the requirements of a new weapon system. It is very important to define the ROC as it has a decisive influence from acquisition of a weapon system to tactical operation. In this study, we propose a simulation methodology to verify the ROC of the Para-Observation Munition(POM), a newly developed weapon system. To this end, we propose a discrete-event simulation model that takes main performance of the weapon system constituting the ROC and environmental factors that affect performance of the weapon system as input values, and outputs operational effect as a result value. It describes various simulation logic required to implement a simulation model, and explains how to verify ROC using various simulation results such as sensitivity analysis. POM is a weapon system that does not have a similar one and that is difficult to directly utilize the military analysis model. This study can be used as a methodology to analyze the ROC and predict operational effects of weapon systems such as POM.

A Case Study on Military Modeling and Simulation for SBA'sEffectiveness Estimation (SBA 효과도 분석을 위한 국방 모의 실험 사례분석)

  • Choi, Dal-Nim;Kim, Hyung-Jong
    • Journal of Software Engineering Society
    • /
    • v.24 no.3
    • /
    • pp.91-99
    • /
    • 2011
  • The weapon system acquisition for national defense is too costly, risky and requires high quality result. Because of these characteristics of the weapon system acquisition, the modeling and simulation is a prerequisite process for enhancing the effectiveness and efficiency of weapon system acquisition. We call the process as SBA (Simulation Based Acquisition). However the modeling and simulation entails costs of model development, execution and analysis. Thus, the SBA's effectiveness analysis is needed. Especially, we developed 4 types of index which represent the effectiveness thoroughly and we applied them to various weapon systems' acquisition process. This work presents the necessity of SBA by showing the application of suggested effectiveness index in various defense weapon system acquisition cases.

  • PDF

Components Design for Guided Weapon System according to Resolution based on Base System Model (기본체계모델 기반 해상도 별 유도 무기체계 컴포넌트 설계)

  • Moon, Kyujin;An, Yu-Young;Jeong, Ui-Taek;Ryoo, Chang-Kyung
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.11-23
    • /
    • 2019
  • An AddSIM(Adaptive distributed and parallel Simulation environment for Interoperable and reusable Models) is developed to construct a composite environment that can be used in the overall stage from military demand analysis to test and evaluation. In addition, a base system model(BSM), which is a component model of the weapon system with standardized hierarchies, has been developed. This paper describes the critical design of BSM for the guided weapon system that can be operated in AddSIM. The guided weapon system BSM is designed for reusability and interoperability, and to have the same interface for assembly, even if the subcomponents have different resolution. Then, each subcomponent is defined and implemented according to the component resolution classification scheme. Finally, Combinations of subcomponents have been used to construct the guided weapon system of various resolution and the performance is compared and analyzed through simulation.

A Study on Simulation of Future Ground System Effectiveness Analysis Model with Communication Effects (통신효과를 고려한 미래지상체계 효과분석 시뮬레이션에 대한 연구)

  • Shin, Sunwoo;Lee, Jaeyeong;Bae, Sungmin;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.168-180
    • /
    • 2017
  • Purpose: In this research, we develop an effectiveness analysis simulation model using Agent Based Modeling with Communication Effects for the development of a new weapon system. Methods: To describe the future battlefield that has more complexity, we develop Agent Based Modeling to describe communication Effects. We use the communication theory (Path-Loss Model) and the real map. Results: We have compared simulation model with real map and simulation model without real map. The Blue Survival Ratio of simulation model with real map is worse than one without real map since the performance of communication gets lower. Conclusion: There are many studies about the effectiveness analysis of a weapon system. Most of previous researches assumed no communication error. In the real world, however, it's not appropriate assumption. Therefore, this study considers the communication error and shows that it is important factor in the effectiveness analysis.

Logical Modeling of Base System Model for Tank Engagement Simulation (전차 교전 시뮬레이션을 위한 기본체계모델의 논리 모델링 방법)

  • Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Tank, which is a representative ground weapon system, is one of the most important weapon systems in each country. For the cost-effective acquisition of a tank based on scientific analysis, the operational concept and effectiveness should be studied based on engagement simulation technology. Besides physical capabilities including maneuver and communication, logical models including decision-making of a tank commander should be developed systematically. This paper describes a method to model a tank for engagement simulation based on Base System Model(BSM), which is the standard architecture of the weapon system model in AddSIM, an integrated engagement simulation software. In particular, a method is proposed to develop logical models by hierarchical and modular approach based on human decision-making model. The proposed method applies a mathematical formalism called DEVS(Discrete EVent system Specification) formalism. It is expected that the proposed method is widely used to study the operational concept and analyze the effectiveness of tanks in the Korean military in the future.

A Study on SE Process based Defense M&S System Development Procedures (SE 프로세스 기반 국방 M&S체계 개발 절차 연구)

  • Dong Joon Lee;Seong Hyun Koh;Sang Bok Lee;Kwan Ghyun Ro;Ju Il Yoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.44-55
    • /
    • 2023
  • The defense M&S system, which has been classified as a weapon system between requirements determination and project implementation, is being developed by applying the weapon system development procedure of the Defense Acquisition Program Administration. The M&S system abstracts and models the real world to suit the intended use and proceeds with the process of developing it as a software-oriented system. Overseas, the conceptual model development stage is staged before entering the design stage after the requirements analysis. In addition, each step includes verification and validation processes. In Korea, while establishing and applying the weapon system development procedure based on the SE process, the M&S system is also applied in the same way as the general weapon system, limiting appropriate development outputs and verification and validation. In this study, the system development procedure of the M&S system is established and presented based on the relevant standards and SE process of developed countries.

Effect Analysis of Factors for Improving Accuracy of RAM Simulation in Weapon System (무기체계 RAM 시뮬레이션의 정확도 향상을 위한 요소별 영향 분석)

  • Chung, Il-Han;Park, Sam-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.102-116
    • /
    • 2008
  • In the development stage of weapon system, it is important to analyze RAM(Reliability, Availability and Maintainability) characteristics. RAM simulation is one of the advanced techniques for analyzing RAM to overpass the limit of mathematical techniques. However, it is necessary to obtain correct input data for reliability and maintainability about target and support system to get highly accurate results through RAM simulation. In this study, we propose the technical method to improve the results by defining input data of simulation more correctly based on analyzing effects of RAM characteristics by major factors.