• Title/Summary/Keyword: Simulation service utilization

Search Result 217, Processing Time 0.028 seconds

Radio Resource Management Scheme for Heterogeneous Wireless Networks Based on Access Proportion Optimization

  • Shi, Zheng;Zhu, Qi
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.527-537
    • /
    • 2013
  • Improving resource utilization has been a hot issue in heterogeneous wireless networks (HWNs). This paper proposes a radio resource management (RRM) method based on access proportion optimization. By considering two or more wireless networks in overlapping regions, users in these regions must select one of the networks to access when they engage in calls. Hence, the proportion of service arrival rate that accesses each network in the overlapping region can be treated as an optimized factor for the performance analysis of HWNs. Moreover, this study considers user mobility as an important factor that affects the performance of HWNs, and it is reflected by the handoff rate. The objective of this study is to maximize the total throughput of HWNs by choosing the most appropriate factors. The total throughput of HWNs can be derived on the basis of a Markov model, which is determined by the handoff rate analysis and distribution of service arrival rate in each network. The objective problem can actually be expressed as an optimization problem. Considering the convexity of the objective function, the optimization problem can be solved using the subgradient approach. Finally, an RRM optimization scheme for HWNs is proposed. The simulation results show that the proposed scheme can effectively enhance the throughput of HWNs, i.e., improve the radio resource utilization.

Maximizing Network Utilization in IEEE 802.21 Assisted Vertical Handover over Wireless Heterogeneous Networks

  • Pandey, Dinesh;Kim, Beom Hun;Gang, Hui-Seon;Kwon, Goo-Rak;Pyun, Jae-Young
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.771-789
    • /
    • 2018
  • In heterogeneous wireless networks supporting multi-access services, selecting the best network from among the possible heterogeneous connections and providing seamless service during handover for a higher Quality of Services (QoSs) is a big challenge. Thus, we need an intelligent vertical handover (VHO) decision using suitable network parameters. In the conventional VHOs, various network parameters (i.e., signal strength, bandwidth, dropping probability, monetary cost of service, and power consumption) have been used to measure network status and select the preferred network. Because of various parameter features defined in each wireless/mobile network, the parameter conversion between different networks is required for a handover decision. Therefore, the handover process is highly complex and the selection of parameters is always an issue. In this paper, we present how to maximize network utilization as more than one target network exists during VHO. Also, we show how network parameters can be imbedded into IEEE 802.21-based signaling procedures to provide seamless connectivity during a handover. The network simulation showed that QoS-effective target network selection could be achieved by choosing the suitable parameters from Layers 1 and 2 in each candidate network.

Cross-Talk: D2D Potentiality Based Resource Borrowing Schema for Ultra-Low Latency Transmission in Cellular Network

  • Sun, Guolin;Dingana, Timothy;Adolphe, Sebakara Samuel Rene;Boateng, Gordon Owusu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2258-2276
    • /
    • 2019
  • Resource sharing is one of the main goals achieved by network virtualization technology to enhance network resource utilization and enable resource customization. Though resource sharing can improve network efficiency by accommodating various users in a network, limited infrastructure capacity is still a challenge to ultra-low latency service operators. In this paper, we propose an inter-slice resource borrowing schema based on the device-to-device (D2D) potentiality especially for ultra-low latency transmission in cellular networks. An extended and modified Kuhn-Munkres bipartite matching algorithm is developed to optimally achieve inter-slice resource borrowing. Simulation results show that, proper D2D user matching can be achieved, satisfying ultra-low latency (ULL) users' quality of service (QoS) requirements and resource utilization in various scenarios.

Performance of Prioritized Service Discipline Based on Hop Count for Optical Burst Switched Networks

  • Kim, Dong-Ok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we propose a new prioritized Optical Burst Switching (OBS) protocol based on a hop count, which can provide efficient utilization in optical networks. Under several legacy schemes, a switch drops the burst with the shortest time regardless of its traversed hop count. As a result, a dropped burst that have been traversed many hops might cause increased bandwidth waste compared to one that has traversed a few hops. To improve this problem, we propose the Just Enough Time (JET) with a hop counting scheme which can reduce the wasted bandwidth by prioritizing the burst traversed many hops over others. From the simulation result, it is preyed, we show that the proposed scheme has advantages against legacy schemes in terms of the burst blocking probability and the link utilization.

  • PDF

Performance analysis of a loss priority control scheme in an input and output queueing ATM switch (입출력 단에 버퍼를 가지는 ATM 교환기의 손실우선순위 제어의 성능 분석)

  • 이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1148-1159
    • /
    • 1997
  • In the broadband integrated service digital networks (B-ISDN), ATM switches hould be abld to accommodate diverse types of applications ith different traffic characteristics and quality ddo services (QOS). Thus, in order to increase the utilization of switches and satisfy the QOS's of each traffic type, some types of priority control schemes are needed in ATM switches. In this paper, a nonblocking input and output queueing ATm switch with capacity C is considered in which two classes of traffics with different loss probability constraints are admitted. 'Partial push-out' algorithm is suggested as a loss priority control schemes, and the performance of this algorithm is analyzed when this is adopted in input buffers of the switch. The quque length distribution of input buffers and loss probabilities of each traffic are obtained using a matrix-geometric solution method. Numerical analysis and simulation indicate that the utilization of the switch with partial push-out algorithm satisfying the QOS's of each traffic is much higher than that of the switch without control. Also, the required buffer size is reduced while satisfying the same QOS's.

  • PDF

Activation of Ontact Research Using Science & Technology Knowledge Infrastructure ScienceON

  • Han, Sangjun;Shin, Jaemin;Lee, Seokhyoung;Park, Junghun
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.1-11
    • /
    • 2022
  • As data-based research activities and outcomes increase and ontact or non-face-to-face activities become common, the demand for easy utilization of resources, tools, functions, and easily accessible information required for research in the R&D sector has increased accordingly. With the rapid increase in the demand for collaborative research based on online platforms, research support institutions strive to provide venues for research activities that merge various information and functions. ScienceON, an integrated science & technology (S&T) knowledge infrastructure service developed and operated by the Korea Institute of S&T Information (KISTI), supports open collaboration by connecting and merging all the information, functions, and infrastructure required for research activities. This paper describes the online research activity support tool provided by ScienceON and the remarkable results achieved through this activity. Specifically, the excellent creation of the following flow of meta-material research activities in the ontact space is elucidated. First, the papers required for a meta-material analysis are retrieved, virtual simulation is conducted with the experimental data extracted from the papers, and research data are accumulated. ScienceON's tools for supporting ontact research activity will play a role as an important service in the era of digital transformation and open science.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

A Basic Study on Utilization of Building Information for n Internet of Things (IoT) Simulation System Development (사물인터넷 시뮬레이션 시스템 개발을 위한 건물정보의 활용에 관한 기초연구)

  • Yu, Jeong-Hyun;Lee, Yun-Gil
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.1
    • /
    • pp.867-874
    • /
    • 2018
  • This study aims to develop a sort of expert system to simulate Internet of Things (IoT) service in architectural design alternatives and enhance the simulation performance using building information. The proposed protype system, named iotBIM, visualizes human behaviors and IoT services in a virtual place that is automatically generated from among design alternatives. We use commercial building information modeling (BIM) authoring tool for the development of iotBIM. The decision to develop iotBIM on the BIM platform was made because BIM tools already generate precise 3D models of design alternatives; iotBIM is plugged into the BIM tool as a simulation module. In the midst of the design process, architectural designers can activate iotBIM to investigate and establish IoT services that accord visually with design alternatives. The purpose of this study is to provide a theoretical and technological basis for the ultimate goal of this study.

Efficient Scheduling Algorithm for Supporting High Bandwidth Utilization and QoS In EPON (EPON에서의 높은 대역폭 사용효율과 QoS 지원을 위한 효율적인 스케줄링 알고리즘)

  • Kim Junseog;Yeon Hunje;Kim Seoggyu;Lee Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.86-96
    • /
    • 2006
  • In recent year, EPON(Ethernet PON) system is expected to be more attractive solutions for high speed, broadband access networks in next generation access networks due to the conversionce of low-cost ethernet equipment and low-cost fiber infrastructure. Upstream channel control algorithm is essential to hare upstream bandwidth in EPON. In this paper, we suggest HUHG(High Utilization and Hybrid Granting) algorithm for supporting high bandwidth utilization and QoS for different service class. This algorithm improves bandwidth utilization as removing or diminishing idle time of upstream channel using characteristics of fixed EF(Expedited Forwarding) sub-cycle. The proposed algorithm also minimizes the packet delay and delay variation of EF class. We conduct detailed simulation experiments using OPNET to study the performance and validate the effectiveness of the proposed algorithm.

A RSVP-capable Router to improve the bandwidth utilization efficiency in resource reservation (자원 예약에 있어 대역폭 이용 효율을 높일 수 있는 RSVP-라우터)

  • Kim, Tae-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.997-1006
    • /
    • 2008
  • SVP-capable router supporting guaranteed services on the internet generally uses a packet scheduler based on the Weighted Fair Queuing(WFQ) algorithm to secure required qualities of traffic flows. In this paper we proposed a RSVP-capable router based on the LOFQ(Latency optimized fair queuing) algorithm that improves the efficiency in bandwidth utilization with keeping the compatibility with the original RSVP procedure. The proposed router reserves the optimal amount of resource for each flow to secure its required quality-of-service with the recently introduced LOFQ scheduler. The results of the simulation applying the proposed router to an evaluation network showed that it may yield the gain of up to 30% compared to that in the original one in terms of the number of admitted flows.

  • PDF