• Title/Summary/Keyword: Simulation process

Search Result 9,682, Processing Time 0.032 seconds

Discrete Event Simulation for the Initial Capacity Estimation of Shipyard Based on the Master Production Schedule (대일정 생산 계획에 따른 조선소 생산 용량의 초기 평가를 위한 이산사건 시뮬레이션)

  • Kim, Kwang-Sik;Hwang, Ho-Jin;Lee, Jang-Hyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.111-122
    • /
    • 2012
  • Capacity planning plays an important role not only for master production plan but also for facility or layout design in shipbuilding. Product work breakdown structure, attributes of production resources, and production method or process data are associated in order to make the discrete event simulation model of shipyard layout plan. The production amount of each process and the process time is assumed to be stochastic. Based on the stochastic discrete event simulation model, the production capacity of each facility in shipyard is estimated. The stochastic model of product arrival time, process time and transferring time is introduced for each process. Also, the production capacity is estimated for the assumed master production schedule.

Development of CAMPform2D Preprocessor for Forming Process U sing Convenient Input Method (편리한 입력방식의 단조공정해석을 위한 CAMPform 2D의 Preprocessor 개발)

  • 박성균;이상헌;이강수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.133-142
    • /
    • 2004
  • CAMPfonn2D is a Finite Element Method (FEM) based process simulation system designed to analyze two dimensional (2D) flow of various metal forming processes. It enables designers to analyze metal forming processes on the computer rather than the shop floor using trial and error and provides vital information about material and thermal flow during the forming process to facilitate the design of products. CAMPfonn2D can be used by companies, research institutes and industrial applications to analyze forging, extrusion, drawing, heading, upsetting and many other metal forming processes. Also, process simulation using CAMPfonn2D can be instrumental in cost, quality and delivery improvements at leading companies. Today's competitive pressures require companies to take advantage of every tool for rapid manufacturing of well-designed product. So, the preprocessor of simulation program must be easy to use to speed-up design. In this paper, we introduce new version of Preprocessor and show how easy to use it. And, Preprocessor will prove itself to be easy and extremely effective.

Investigation of Operating Parameters on UCT Process for the Purpose of Nitrogen Removal Using Computer Simulation (하수의 질소제거시 컴퓨터 시뮬레이션을 이용한 UCT(University of Cape Town) 공정의 운영인자 검토)

  • 김병군;서인석;이해군;김창원
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.66-75
    • /
    • 1998
  • The computer simulation model was used to forecast the concentrations of COD$_{cr}$, NH$_{4}$$^{+}$-N and NO$_{3}$$^{-}$-N in each reactors. In the biological wastewater treatment system, the computer simulation model was used to observe the behavior of pollutants especially. In this research, effect of SRT, feeding pattern and recirculation rate on UCT(University of Cape Town) process was evaluated by computer simulation model. T-N removal was affected to the SRT. SRT for effective T-N removal was 15 days or longer. Feeding pattern in UCT process was affected to the T-N removal. Feeding pattern which 100% loading to the first reactor was most effective for T-N removal. The effect of recirculation rate was clear for T-N removal. The recirculation from anoxic reactor to anaerobic reactor was not need but the recirculation from oxic reactor to anoxic reactor was need. In aspect of nitrogen removal efficiency, A/O process was higher than UCT process.

  • PDF

A Study on the Improvement of the Batch-means Method in Simulation Analysis (모의실험 분석중 구간평균기법의 개선을 위한 연구)

  • 천영수
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.2
    • /
    • pp.59-72
    • /
    • 1996
  • The purpose of this study is to make an improvement to the batch-means method, which is a procedure to construct a confidence interval(c.i.) for the steady-state process mean of a stationary simulation output process. In the batch-means method, the data in the output process are grouped into batches. The sequence of means of the data included in individual batches is called a batch-menas process and can be treated as an independently and identically distributed set of variables if each batch includes sufficiently large number of observations. The traditional batch-means method, therefore, uses a batch size as large as possible in order to. destroy the autocovariance remaining in the batch-means process. The c.i. prodedure developed and empirically tested in this study uses a small batch size which can be well fitted by a simple ARMA model, and then utilizes the dependence structure in the fitted model to correct for bias in the variance estimator of the sample mean.

  • PDF

Modeling of Electrical Characteristics in Poly Silicon Thin Film Transistor with Process Parameter (다결정 실리콘 박막 트랜지스터에서 공정 파라미터에 따른 전기적 특성의 모델링)

  • Jung, Eun-Sik;Choi, Young-Sik;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.201-204
    • /
    • 2001
  • In this paper, for modeling of electrical characteristics in Poly Silicon Thin Film Transistors with process parameters set up optimum values, So, the I-V characteristics of poly silicon TFT parameters are examined and simulated in terms of the variations in process parameter. And these results compared and analyzed simulation values with examination value. The simulation program for characteristic analysis used SUPREM IV for processing, Matlab for modeling by mathematics, and SPICE for electric characteristic of devices. Input parameter for simulation characteristics is like condition of device process sequence, these electric characteristic of $I_D-V_D$ $I_D-V_G$, variations of grain size. The Gate oxide thickness of poly silicon are showed similar results between real device characteristics and simulation characteristics.

  • PDF

Business Process Simulation Modeling and Analysis Based on Role-Based Modeling Concept (Role 개념에 근거한 비즈니스 프로세스 시뮬레이션 모형 구축 및 분석)

  • Cho, Yoon-Ho;Kim, Jae-Kyeong;Kim, Soung-Hie
    • Asia pacific journal of information systems
    • /
    • v.8 no.2
    • /
    • pp.69-83
    • /
    • 1998
  • Some simulation tools have been developed to support business process reengineering. These tools can be used to not only analyze an as-is model of the existing process but also assess the potential value and feasibility of to-be models. But most of them are restricted to analyzing and redesign of the workflow only. Little attention is paid to the organization of people and their roles. This paper Presents a new methodology for business process simulation modeling and analysis. The methodology is based on the concepts of roles and customer-supplier chains. So the proposed methodology allows for tracking people and their roles affected by reengineering the business process. It enables one to analyze and evaluate not only workflow, but roles that are part of the flow. This paper developed a simulator to systematically construct simulation models and conduct simulations easily and efficiently. A case study is also presented as an illustrative example.

  • PDF

Modeling and Simulation of Ship Panel-block Assembly Line Using Petri Nets (Petri Nets을 이용한 조선소 패널 블록 조립 라인의 모델링과 시뮬레이션)

  • Han, Sang-Dong;Ryu, Cheol-Ho;Shin, Jong-Gye;Lee, Jong-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • This paper proposes a modeling and simulation process of a panel production line (PPL) in a shipyard. The panel production line is an assembly process to produce a main panel of a flat block and a curved block. In this paper, its activity analysis is carried out using expression of IDEF0, and its process is qualitatively and quantitatively analyzed and modeled by Petri Nets. A commercial discrete event simulation tool, $QUEST^{TM}$, is used for virtual PPL and simulation. The modeling results by Petri Net are mapped to elements of the simulation tool. Finally, an integrated simulation environment of PPL is implemented in order to efficiently utilize the virtual PPL model. With the help of IDEF0 and Petri Nets, we could systematically analyze and describe the PPL process that are characterized as being concurrent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic. Also, the dynamic and concurrent activities of a PPL system were able to be simulated. A timing concept can be included into the Petri nets model to evaluate performance and dependability issues of the system.

A Template Based Process Modeling Methodology for Control Simulation (제어 시뮬레이션을 위한 템플릿기반 공정 모델링 방법론)

  • Shin, Hye-Seon;Ko, Min-Suk;Hong, Sang-Hyun;Park, Sang-Chul;Wang, Gi-Nam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.351-360
    • /
    • 2011
  • Product systems are quickly and frequently changed because Product Life Cycle is continuously reduced and adopting new product is steadily fast. Thus, various studies are progressed using simulation which is one of digital manufacturing. The research that is concerning simulation of control verification for shorten the commissioning which has a lot of trial and error is in progress. Also, simulation of control verification has strength that it can catch the errors in advance. However, a control program in simulation needs virtual factory for representation of control information. For this reason, excessive time and energy is put into controlling the virtual factory. So, in this paper, we construct library which is using exist data, in order to overcome limitation of these problems. Furthermore, we suggest methodology which can model and verify the process more speedy using library. Especially, we give body to the BB/BR Line process which has many altering equipment and need high technology effectively using physical and logical modeling. We can set up a control simulation environment very rapidly, as well as cut process time down using our suggestion.

Comparison of the Finite Element Analysis and Experimental Result for Green Body Density of Alumina Ceramics (알루미나 압축성형체의 성형밀도와 유한요소 시뮬레이션 결과의 비교)

  • Yook, Young-Jin;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.235-239
    • /
    • 2007
  • For the pressure compaction process of the ceramic powder, the density distribution is very important for the uniform shrinkages at the sintered body. In this paper, we fabricated alumina green body using compaction process and simulated about same condition. Then comparison of simulation and experimental result confirmed that accuracy of simulation. On the average density of top and lower part was each $2.41g/cm^3,\;2.27g/cm^3$ and deviation at final step was calculated with 0.06 in simulation. Also, experiments show that total density of top and lower part was each $2.59g/cm^3,\;2.36g/cm^3$, and deviation was 0.09. Conclusion, that was not a difference to the simulation and experimental result. The application using the finite element simulation method is possible optimization of the compressing process, predict generated part of cracks and there is a possibility of getting result of more fast, more accurate then existing experience method.

Springback Prediction of Tailor Rolled Blank in Hot Stamping Process by Partial Heating (국부가열을 이용한 핫스탬핑 공정에서 Tailor Rolled Blank의 스프링백 예측)

  • Shim, G.H.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.396-401
    • /
    • 2016
  • Recently, Multi-strength hot stamping process has been widely used to achieve lightweight and crashworthiness in automotive industry. In concept of multi-strength hot stamping process, process design of tailor rolled blank(TRB) in partial heating is difficult because of thickness and temperature variation of blank. In this study, springback prediction of TRB in partial heating process was performed considering its thickness and temperature variation. In partial heating process, TRB was heated up to $900^{\circ}C$ for thicker side and below $Ac_3$ transformation temperature for thinner side, respectively. Johnson-Mehl-Avrami-Kolmogorov(JMAK) equation was applied to calculate austenite fraction according to heating temperature. Calculated austenite fraction was applied to FE-simulation for the prediction of springback. Experiment for partial heating process of TRB was also performed to verify prediction accuracy of FE-simulation coupled with JMAK equation.