• 제목/요약/키워드: Simulation modeling and analysis

검색결과 2,515건 처리시간 0.049초

반코마이신의 약물동태학적 모델링과 시뮬레이션의 향상을 위한 분석오차 (Assay Error for Improved Pharmacokinetic Modeling and Simulation of Vancomycin)

  • 범진필
    • 약학회지
    • /
    • 제57권1호
    • /
    • pp.32-36
    • /
    • 2013
  • The purpose of this study was to determine the influence of assay error for improved pharmacokinetic modeling and simulation of vancomycin on the Bayesian and nonlinear least squares regression analysis in 24 Korean gastric cancer patients. Vancomycin 1.0 g was administered intravenously over 1 hr every 12 hr. Three specimens were collected at 72 hr after the first dose from all patients at the following times, at 0.5 hr before regularly scheduled infusion, at 0.5 hr and 2 hr after the end of 1 hr infusion. Serum vancomycin levels were analyzed by fluorescence polarization immunoassay technique with TDX-FLX. The standard deviation (SD) of the assay over its working range had been determined at the serum vancomycin concentrations of 0, 20, 40, 60, 80 and $120{\mu}g/ml$ in quadruplicate. The polynomial equation of vancomycin assay error was found to be SD $({\mu}g/ml)=0.0224+0.0540C+0.00173C^2$ ($R^2=0.935$). There were differences in the influence of weight with vancomycin assay error on pharmacokinetic parameters of vancomycin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynomial equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result suggests the improvement of dosage regimens for the better and safer care of patients receiving vancomycin.

전달관로 모델링을 이용한 유압제어 시스템의 가변 시간스텝 시뮬레이션 및 해석 (Variable Time Step Simulation and Analysis of Hydraulic Control Systems using Transmission Line Modeling)

  • 황운규;조승호
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.843-850
    • /
    • 2002
  • This paper presents a simulation method using the transmission line modeling to reduce simulation runtime of hydraulic control systems. This method is based on separating the system components each other using the transmission line elements prior to simulation, which leads to divide the simulated system into several subsystems suitable for an even more efficient integration. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. By applying variable integration timestep to parallel hydraulic circuits via parallel processing, it is shown that simulation run-time can be reduced significantly compared with that of Runge Kutta method.

통신효과를 고려한 미래지상체계 효과분석 시뮬레이션에 대한 연구 (A Study on Simulation of Future Ground System Effectiveness Analysis Model with Communication Effects)

  • 신선우;이재영;배성민;김종만
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권2호
    • /
    • pp.168-180
    • /
    • 2017
  • Purpose: In this research, we develop an effectiveness analysis simulation model using Agent Based Modeling with Communication Effects for the development of a new weapon system. Methods: To describe the future battlefield that has more complexity, we develop Agent Based Modeling to describe communication Effects. We use the communication theory (Path-Loss Model) and the real map. Results: We have compared simulation model with real map and simulation model without real map. The Blue Survival Ratio of simulation model with real map is worse than one without real map since the performance of communication gets lower. Conclusion: There are many studies about the effectiveness analysis of a weapon system. Most of previous researches assumed no communication error. In the real world, however, it's not appropriate assumption. Therefore, this study considers the communication error and shows that it is important factor in the effectiveness analysis.

Dynamic Monte Carlo transient analysis for the Organization for Economic Co-operation and Development Nuclear Energy Agency (OECD/NEA) C5G7-TD benchmark

  • Shaukat, Nadeem;Ryu, Min;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.920-927
    • /
    • 2017
  • With ever-advancing computer technology, the Monte Carlo (MC) neutron transport calculation is expanding its application area to nuclear reactor transient analysis. Dynamic MC (DMC) neutron tracking for transient analysis requires efficient algorithms for delayed neutron generation, neutron population control, and initial condition modeling. In this paper, a new MC steady-state simulation method based on time-dependent MC neutron tracking is proposed for steady-state initial condition modeling; during this process, prompt neutron sources and delayed neutron precursors for the DMC transient simulation can easily be sampled. The DMC method, including the proposed time-dependent DMC steady-state simulation method, has been implemented in McCARD and applied for two-dimensional core kinetics problems in the time-dependent neutron transport benchmark C5G7-TD. The McCARD DMC calculation results show good agreement with results of a deterministic transport analysis code, nTRACER.

차량 안정성 제어용 유압 모듈레이터의 특성 해석 (Analysis of the Characteristics of ASMS Hydraulic Modulator (Automotive Stability Management System))

  • 송창섭;김형태;신상원;정태천
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.127-133
    • /
    • 2001
  • In this study, the effect of the factors of a hydraulic modulator of ASMS was analysed. The modeling of ASMS was presented and the equation of ASMS was derived from the modeling. With this background, GUI analysis tool was developed. After the verification of the reasonability of simulation, the response of a hydraulic modulator is investigated through simulation of modeling. With this simulation, each behavior was predicted with changing the various parameters and determined the influenced factors to apply the designing process.

  • PDF

정태 등가회로해석에 의한 유도전동기 부하모델의 개발 (Development of Load Modeling for Induction Motor Using Steady-slate Equivalent Circuit)

  • 심건보;오기봉
    • 조명전기설비학회논문지
    • /
    • 제16권1호
    • /
    • pp.50-57
    • /
    • 2002
  • 전력시스템의 정밀 해석을 위해서는 부하모델이 정확하게 표현되어야 하는데, 이러한 부하 중에서 유도전동기 는 가정용, 상업용 및 산업용의 전 분야에서 가장 큰 비중을 차지하는 부하이다. 본 논문은 부하로서의 유도전동기에 대하여 복잡하고 어려운 시뮬레이션의 해법을 해결하고자 하는 노력으로서, 일반적으로 알려져 있는 유도 전동기의 정태 등가회로를 이용하여 정태특성을 시뮬레이션하는 새로운 부하 모델을 제안하고, 파라미터를 알고 있는 유도전동기의 특성실험을 수행하였으며, 이 실험으로부터 얻어진 데이터를 제안된 정태 등가회로 해석에 의한 유도전동기의 부하모델 알고리즘에 적용하는 사례연구를 통하여 제안한 정태회로 해석에 의한 유도전동기 부하 모델의 효용성을 평가하였다.

효율적인 육군항공과 포병자산의 통합화력 운용방안 판단을 위한 모델링 방법론 및 분석 (Modeling and Analysis for Efficient Joint Combat Fire Operation of Army Artillery and Army Aviation)

  • 임종원;권혁래;이태억
    • 한국시뮬레이션학회논문지
    • /
    • 제23권2호
    • /
    • pp.47-55
    • /
    • 2014
  • 한국군의 분석용 시뮬레이션모델을 포함한 대개의 전투시뮬레이션 모델들은 통합화력과 같은 복잡한 전투상황을 모델링, 분석하기에는 어려움이 많다. 본 연구에서는 Fire Eagle과 같은 지상화력과 육군항공의 통합화력전투훈련의 분석을 위한 모델링 및 시뮬레이션 요구사항을 분석한다. 이에 기반하여 Fire Eagle을 위한 시뮬레이션 모델을 제안, 개발하고 통합화력을 개선하기 위한 전략을 도출한다. 이 시뮬레이션 모델을 이용하여 특정 작전계획 및 시나리오의 효과성을 분석한다. 이 시뮬레이션 실험 결과를 바탕으로 효율적이고 효과적인 작전계획을 개발하는 시범을 보인다.

인체장기의 정밀한 NURBS 곡면 모델링 사례연구 (A Case Study on Precise NURBS Modeling of Human Organs)

  • 김호찬;배용환;서태원;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.915-918
    • /
    • 2005
  • Advances in Information Technology and in Biomedicine have created new uses for CAD technology with many novel and important biomedical applications. Such applications can be found, for example, in the design and modeling of orthopedics, medical implants, and tissue modeling in which CAD can be used to describe the morphology, heterogeneity, and organizational structure of tissue and anatomy. CAD has also played an important role in computer-aided tissue engineering for biomimetic design, analysis, simulation and freeform fabrication of tissue scaffolds and substitutes. And all the applications require precision geometry of the organs or bones of each patient. But the geometry information currently used is polygon model with none solid geometry and is so rough that it cannot be utilized for accurate analysis, simulation and fabrication. Therefore a case study is performed to deduce a transformation method to build free form surface from a rough polygon data or medical images currently used in the application. This paper describes the transformation procedure in detail and the considerations for accurate organ modeling are discussed.

  • PDF

Study on Simulation Design of Light Emitting Diode Luminaires for 100 W Safety Street Lighting

  • Shin, Ik-Tae;Lee, Se-Il;Yang, Jong-Kyoung;Park, Dae-Hee;Lee, Dong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권3호
    • /
    • pp.138-144
    • /
    • 2010
  • Optical analysis is necessary to optimize light emitting diode (LED) safety street lighting. In this study, optical analysis was conducted for 100 W LED safety street lighting. Experimental research on such a single LED was the first undertaken. Simulation modeling based on the optical properties of the single LED has compared between average road illuminances and has them analyzed with Korean Industrial Standards for LED safety street lighting (KS C7658:2009). The simulation results demonstrated that the illumination performance (average road illuminance) was 75.3 lx at a height of 4 m and an area of $32\;m^2$, 45.25 lx at a height of 5 m and an area of $72\;m^2$, and 30.05 lx at a height of 6 m and an area of $128\;m^2$. 100 W safety street lighting (model CE180-ST-OS) designed by simulation was also compared between product and 100 W simulation modeling, and error rates averaged 5.6%. The 100 W LED safety street lighting base designed in simulation modeling was proven by comparison experiments. Through the simulations and the corresponding analysis, it was found that the tested 100 W LED safety street lamp had reasonable performance. The design method for LED safety street lamps has been summarized based on the optical analysis.

Acoustic performance of industrial mufflers with CAE modeling and simulation

  • Jeon, Soohong;Kim, Daehwan;Hong, Chinsuk;Jeong, Weuibong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.935-946
    • /
    • 2014
  • This paper investigates the noise transmission performance of industrial mufflers widely used in ships based on the CAE modeling and simulation. Since the industrial mufflers have very complicated internal structures, the conventional Transfer Matrix Method (TMM) is of limited use. The CAE modeling and simulation is therefore required to incorporate commercial softwares: CATIA for geometry modeling, MSC/PATRAN for FE meshing and LMS/SYSNOISE for analysis. Main sources of difficulties in this study are led by complicated arrangement of reactive elements, perforated walls and absorption materials. The reactive elements and absorbent materials are modeled by applying boundary conditions given by impedance. The perforated walls are modeled by applying the transfer impedance on the duplicated node mesh. The CAE approach presented in this paper is verified by comparing with the theoretical solution of a concentric-tube resonator and is applied for industrial mufflers.