• Title/Summary/Keyword: Simulation game

Search Result 571, Processing Time 0.021 seconds

Game Theory based Dynamic Spectrum Allocation for Secondary Users in the Cell Edge of Cognitive Radio Networks

  • Jang, Sungjin;Kim, Jongbae;Byun, Jungwon;Shin, Yongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2231-2245
    • /
    • 2014
  • Cognitive Radio (CR) has very promising potential to improve spectrum utilization by allowing unlicensed Secondary Users (SUs) to access the spectrum dynamically without disturbing licensed Primary Users (PUs). Mitigating interference is a fundamental problem in CR scenarios. This is particularly problematic for deploying CR in cellular networks, when users are located at the cell edge, as the inter-cell interference mitigation and frequency reuse are critical requirements for both PUs and SUs. Further cellular networks require higher cell edge performance, then SUs will meet more challenges than PUs. To solve the performance decrease for SUs at the cell edge, a novel Dynamic Spectrum Allocation (DSA) scheme based on Game Theory is proposed in this paper. Full frequency reuse can be realized as well as inter-cell interference mitigated according to SUs' sensing, measurement and interaction in this scheme. A joint power/channel allocation algorithm is proposed to improve both cell-edge user experience and network performance through distributed pricing calculation and exchange based on game theory. Analytical proof is presented and simulation results show that the proposed scheme achieves high efficiency of spectrum usage and improvement of cell edge SUs' performance.

Bandwidth Requirement and Priority-based Synchronization Methods in Hybrid Client-Server Architecture for Mobile Multiplayer Games (모바일 멀티플레이어 게임을 위한 하이브리드 클라이언트-서버 구조의 대역폭 요건과 우선순위 기반 동기화 기법)

  • Kim, Jinhwan
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.526-534
    • /
    • 2014
  • Most of the multiplayer games available online are based on a client-server architecture because this architecture gives better administration control to the game providers than peer-to-peer architecture. In this architecture, the server is responsible for all the communication between the connected clients. The weakness of this architecture is its bandwidth requirement and scalability. Peer-to-peer architectures have then been proposed to solve these issues. In this paper, we propose a hybrid client-server architecture in which the game state is partially shared by the mobile terminal to achieve consistency among different players. Like a peer-to-peer architecture, this architecture uses client-side capacities to reduce bandwidth requirements for the server and improves consistency in wireless networks. Client events have different timeliness and consistency requirements according to their nature in the game world. These requirements lead to tasks with different priorities on CPU processing. In the proposed architecture, either the server or the client applies consistency mechanism according to the priority level. Simulation experiments show that the bandwidth of the server in this architecture is smaller than that of the client-server architecture. As a result, the server in the proposed architecture can accommodate more clients with enhancing the scalability.

A Markov Game based QoS Control Scheme for the Next Generation Internet of Things (미래 사물인터넷을 위한 마르코프 게임 기반의 QoS 제어 기법)

  • Kim, Sungwook
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1423-1429
    • /
    • 2015
  • The Internet of Things (IoT) is a new concept associated with the future Internet, and it has recently become a popular concept to build a dynamic, global network infrastructure. However, the deployment of IoT creates difficulties in satisfying different Quality of Service (QoS) requirements and achieving rapid service composition and deployment. In this paper, we propose a new QoS control scheme for IoT systems. The Markov game model is applied in our proposed scheme to effectively allocate IoT resources while maximizing system performance. The results of our study are validated by running a simulation to prove that the proposed scheme can promptly evaluate current IoT situations and select the best action. Thus, our scheme approximates the optimum system performance.

A Signal Subspace Interference Alignment Scheme with Sum Rate Maximization and Altruistic-Egoistic Bayesian Gaming

  • Peng, Shixin;Liu, Yingzhuang;Chen, Hua;Kong, Zhengmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1926-1945
    • /
    • 2014
  • In this paper, we propose a distributed signal subspace interference alignment algorithm for single beam K-user ($3K{\geq}$) MIMO interference channel based on sum rate maximization and game theory. A framework of game theory is provided to study relationship between interference signal subspace and altruistic-egoistic bayesian game cost function. We demonstrate that the asymptotic interference alignment under proposed scheme can be realized through a numerical algorithm using local channel state information at transmitters and receivers. Simulation results show that the proposed scheme can achieve the total degrees of freedom that is equivalent to the Cadambe-Jafar interference alignment algorithms with perfect channel state information. Furthermore, proposed scheme can effectively minimize leakage interference in desired signal subspace at each receiver and obtain a moderate average sum rate performance compared with several existing interference alignment schemes.

A Study on the Server Framework for Multi-platform Simulation Network Game (멀티 플랫폼 시뮬레이션 네트워크 게임을 위한 서버 프레임워크 연구)

  • Kwon, Soon-Jung
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.165-172
    • /
    • 2017
  • Some duplicate processes are happen in developing games under the diverse platforms. Implementing functions. like processing and managing data, in every platforms have an influence on game development. In this paper, we propose a multi-platform server framework that can simulate combat games such as one server on any platform. It was designed to be easy to debug using a protocol consisting of attribute-value pairs by the JSON data format. Since it is independent of the programming language, it has the advantage of being able to communicate with various languages. The server proposes a model that can easily upgrade the structure or the specification using the Amazon web server.

Fair Power Control Using Game Theory with Pricing Scheme in Cognitive Radio Networks

  • Xie, Xianzhong;Yang, Helin;Vasilakos, Athanasios V.;He, Lu
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.183-192
    • /
    • 2014
  • This paper proposes a payment-based power control scheme using non-cooperative game with a novel pricing function in cognitive radio networks (CRNs). The proposed algorithm considers the fairness of power control among second users (SUs) where the value of per SU' signal to noise ratio (SINR) or distance between SU and SU station is used as reference for punishment price setting. Due to the effect of uncertainty fading environment, the system is unable to get the link gain coefficient to control SUs' transmission power accurately, so the quality of service (QoS) requirements of SUs may not be guaranteed, and the existence of Nash equilibrium (NE) is not ensured. Therefore, an alternative iterative scheme with sliding model is presented for the non-cooperative power control game algorithm. Simulation results show that the pricing policy using SUs' SINR as price punishment reference can improve total throughput, ensure fairness and reduce total transmission power in CRNs.

Forcasting of Real Time Traffic Situation (실시간 교통상황 예보)

  • 홍유식;진현수;최명복;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.292-297
    • /
    • 2000
  • This paper proposes a new concept of coordinating green time which controls 10 traffic intersection systems. For instance, if we have a baseball game at 8 pm today, traffic volume toward the baseball game at 8 pm today, traffic volume toward the baseball game will be increased 1 hour or 1 hour and 30 minutes before the baseball game. At that time we can not predict optimal green time Even though there have smart elctro-sensitive traffic light system. Therefore, in this paper to improve average vehicle speed and reduce average vehicle waiting time, we created optimal green time using fuzzy rules and neural network. Computer simulation results proved reducing average vehicle waiting time which proposed coordinating green time better than electro-sensitive traffic light system dosen't consider coordinating green time.

  • PDF

Multimedia Service Discrimination Based on Fair Resource Allocation Using Bargaining Solutions

  • Shin, Kwang-Sup;Jung, Jae-Yoon;Suh, Doug-Young;Kang, Suk-Ho
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.341-351
    • /
    • 2012
  • We deal with a resource allocation problem for multimedia service discrimination in wireless networks. We assume that a service provider allocates network resources to users who can choose and access one of the discriminated services. To express the rational service selection of users, the utility function of users is devised to reflect both service quality and cost. Regarding the utility function of a service provider, total profit and efficiency of resource usage have been considered. The proposed service discrimination framework is composed of two game models. An outer model is a repeated Stackelberg game between a service provider and a user group, while an inner model is a service selection game among users, which is solved by adopting the Kalai-Smorodinsky bargaining solution. Through simulation experiments, we compare the proposed framework with existing resource allocation methods according to user cost sensitivity. The proposed framework performed better than existing frameworks in terms of total profit and fairness.

Mean Field Game based Reinforcement Learning for Weapon-Target Assignment (평균 필드 게임 기반의 강화학습을 통한 무기-표적 할당)

  • Shin, Min Kyu;Park, Soon-Seo;Lee, Daniel;Choi, Han-Lim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2020
  • The Weapon-Target Assignment(WTA) problem can be formulated as an optimization problem that minimize the threat of targets. Existing methods consider the trade-off between optimality and execution time to meet the various mission objectives. We propose a multi-agent reinforcement learning algorithm for WTA based on mean field game to solve the problem in real-time with nearly optimal accuracy. Mean field game is a recent method introduced to relieve the curse of dimensionality in multi-agent learning algorithm. In addition, previous reinforcement learning models for WTA generally do not consider weapon interference, which may be critical in real world operations. Therefore, we modify the reward function to discourage the crossing of weapon trajectories. The feasibility of the proposed method was verified through simulation of a WTA problem with multiple targets in realtime and the proposed algorithm can assign the weapons to all targets without crossing trajectories of weapons.

Optimal Energy Consumption Scheduling in Smart-Grid Considering Storage Appliance : A Game-Theoretic Approach (스마트 그리드에 있어서 저장 장치를 고려한 최적 에너지 소비 스케줄링 : 게임 이론적 접근)

  • Yeo, Sangmin;Lee, Deok-Joo;Kim, Taegu;Oh, Hyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.414-424
    • /
    • 2015
  • In this research, we consider a smart grid network of electricity with multiple consumers connected to a monopolistic provider. Each consumer can be informed the real time price changes through the smart meter and updates his consumption schedule to minimize the energy consumption expenditures by which the required power demand should be satisfied under the given real time pricing scheme. This real-time decision making problem has been recently studied through game-theoretic approach. The present paper contributes to the existing literature by incorporating storage appliance into the set of available household appliances which has somewhat distinctive functions compared to other types of appliances and would be regarded to play a significant role in energy consumption scheduling for the future smart grid. We propose a game-theoretic algorithm which could draw the optimal energy consumption scheduling for each household appliances including storage. Results on simulation data showed that the storage contributed to increase the efficiency of energy consumption pattern in the viewpoint of not only individual consumer but also whole system.