• Title/Summary/Keyword: Simulation Orifice

Search Result 119, Processing Time 0.024 seconds

Analysis of a Variable Damper and Pneumatic Spring Suspension for Bicycle Forks using Hydraulic-Pneumatic Circuit Model (유공압 회로를 이용한 자전거 포크용 가변댐퍼-공압스프링 서스펜션의 해석)

  • Chang, Moon Suk;Choi, Young Hyu;Kim, Su Tae;Choi, Jae Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • The objective of this study was to present a damped pneumatic suspension, a bike fork suspension, which can adapt itself to incoming road excitations is presented in this paper. It consists of a hydraulic damper and a pneumatic spring in parallel with a linear spring. The study also proposed a variable and switchable orifice, in the hydraulic damper, to select appropriate damping property. Hydraulic-pneumatic circuit model for the bike fork suspension was established based on AMESim, in order to predict its performance. In addition, elastic-damping characteristics of the fork such as spring constant and viscous damping coefficient were computed and compared, for validation, with those evaluated by experiment using the universal test machine. Through simulation analysis and test, it was established that the hydraulic-pneumatic circuit model is effective and practical for development of future MTB suspensions.

Shape Design Sensitivity Analysis Case of the Valves installed in the Hydraulic Driving Motor (사판식 구동모터에 장착된 밸브의 설계변수 민감도 해석 사례)

  • Noh, Dae-Kyung;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 2013
  • This paper is about study how to decrese surge pressure that is occurred in excavator driving motor. We used computer simulation program SimulationX. It is also about the way finding design problem and approaching a solution through interpreting shape design sensitivity analysis. Programmes are below. First of all, finding shape fault by analyzing dynamic behavior of valves installed in hydraulic driving motor which is designed now. And drawing variable which is considered sensitive to improve dynamic efficiency among a lot of shape variables. Then, targeting that variable and examining dynamic efficiency stabilization tendency with controlling it. Finally, suggesting the most effective tuning method through variable combination as there are a lot of sensitive variables.

Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

  • Lee, Y.S.;Lee, S.H.;Hwang, K.M.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2016
  • Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.

A Study on the Analysis of Hydraulic Circuit for First Pressure Control of Automatic Transmission KICK DOWN System (자동변속기 KICK DOWN 시스템의 1차 압력 제어를 위한 유압 회로 해석에 관한 연구)

  • 김대중;송창섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.171-179
    • /
    • 1991
  • This paper refers to the results of a study on the usefulness of simulation techniques based on both modeling and experiments of KICK DOWN pressure control circuit using an duty solenoid valve controlled by pulse width modulation for an automatic transmission. In this study, dynamic characteristics of solenoid valve plunger and first pressure are verified. Besides, this paper shows the design data for improvement of feeling in changing of gear by means of simulation according to varying the size of jet orifice and temperature of automatic transmission fluid, which are the important variables of the first pressure.

  • PDF

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

Examining the Equality of Multi-Outlet Flow Rates within a Dual Open Channel (이중 수로 구조의 분배수로 내 다지점 유출 유량의 균등성 평가에 관한 연구)

  • Kim, Seong-Su;Park, No-Suk;Jeong, Woo-Chang;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.423-430
    • /
    • 2012
  • This study was conducted to qualify the equality of the flow distribution from open channel between rapid mixing basin and flocculation basins in a domestic S_ water treatment plant, and to suggest a remedy for improving the equality. In order to evaluate the feasibility of the suggested remedy, computational fluid dynamics (CFD) technique are used, and for verifying the CFD simulation results tracer tests were carried out. From the results of CFD simulation and tracer tests, it was investigated that the modification of hydraulic structure in the distribution channel, which is to install the longitudinal orifice baffle in flow direction, could improve the equality of the flow distribution over 75%.

Preliminary Design Program for a High Thrust Liquid Rocket-Engine : Components Design for Static Performance Design (대추력 액체로켓엔진 예비설계 프로그램 : 정상성능 설계를 위한 구성품 모델링)

  • Ko, Tae-Ho;Kim, Sang-Min;Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.414-416
    • /
    • 2009
  • In order to build a transient simulation program for a high thrust liquid rocket engine(LRE), a static performance simulation program for components were made. The components were the thrust chamber (combustion chamber and supersonic nozzle), centrifugal pump (impeller and volute casing), impulse turbine, and flow control devices (control valve and orifice). Simplified mathematical models based on classical thermodynamic and inviscid theories were used to remove complexity and enhance the utility of the program. We examined the results of each program qualitatively for validate each component modeling.

  • PDF

A Study on Development of High Flow Solenoid Valves (대유량 솔레노이드 밸브 개발에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Port size 80mm or above large-flow type solenoid valves are extensively used in dust collector and power plants. These multi-stage solenoid valve have few problem. first, multi-solenoid valves are almost depend on imports and there are weak in the brine environment and the low energy efficiency. Because these problem, increased the necessity of research on the development of large flow and high pressure type solenoid valves. In this study, describe the design method of multi-stage solenoid test bench and confirm the influence valve performance on several parameter such as diaphragm orifice diameter. At first, each part has modeled by AMESim simulation tool and combining them. This AMESim virtual multi-stage solenoid valve found influence valve performance on the valve parameter. Finally developed the multi-stage solenoid valve and verified that performance on experimental result.

An Optimal Design of a two stage relief valve by Genetic Algorithm

  • Kim, seungwoo;doowan Im;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.66.2-66
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determin...

  • PDF

Analysis and Design of a Pneumatic Vibration Isolation System: Part II. Simulation, Experimental Verification and Design Optimization (공압 제진 시스템의 해석과 설계: II. 시뮬레이션, 실험과 설계 최적화)

  • Moon Jun Hee;Pahk Heui Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.137-146
    • /
    • 2004
  • This is the second of two companion papers concerned with the analysis and design of a pneumatic vibration isolation system. The properties of the system are clarified by observation of the transmissibility surface calculated by the models and algorithm developed in the first paper of this research. It Is shown that the nonlinear model proposed in this research is more closer to experimental results than the linear model that have been used in previous studies. The design optimization of the major design variables that affect the performance of the system is achieved by using the condition for attenuation, disturbance rejection and maximum damping in resonance peak. The design space search method is adopted for the optimization of the orifice area. The models, transmissibility calculation algorithms and design optimization techniques developed in this research are shown to be greatly helpful to the optimal design of the pneumatic vibration isolation system by experiment.