• Title/Summary/Keyword: Simulation Orifice

Search Result 119, Processing Time 0.027 seconds

Characteristics of the Transient Pressure in a Building Water Supply System with an Air Chamber (공기실이 설치된 건축물 급수관로의 과도압력 특성)

  • 황희성;임기원;이광복;조병선;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.782-790
    • /
    • 2000
  • A numerical study has been conducted to characterize the transient pressure in a building water supply system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for the purpose of verification in the study agree quite well with the previously reported. Several parameters are then varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the inner diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^P{circ}C $,/TEX> and 0.8 m/s, respectively, Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

Door Damper Simulation using ADAMS (ADAMS를 이용한 Door Damper 동적거동 해석)

  • Hwang, Jae-Up;Kwon, Yong-Cheol;Bae, Jae-Sung;Hwang, Jae-Hyuk;Hong, Yeh-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • In this study the flow rate-to-pressure difference characteristics of short-tube type damping orifices for a aircraft door damper were investigated by CFD analyses. For the verification of the CFD analysis results the actual performance of a door damper was measured and compared with them. and The dynamic response of door damper is Simulated using ADAMS. it's performance is evaluated comparing to the experiment result of door damper.

Development of Performance Analysis Program for a Hydraulic Shimmy Damper of Steering System (조향계 유압 시미댐퍼의 성능해석 프로그램 개발)

  • 이재천;정용승;김진홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.174-183
    • /
    • 2004
  • A program to analyze the performance characteristics of a hydraulic shimmy damper for automotive steering system was developed in this study. Dimensionless mathematical equations of the dynamics of shimmy damper for forward and reverse fluid flows were derived respectively and incorporated into the Simulink models. The program was validated by comparing the results of simulation and experiments for various frequencies of upstream ripple pressures into the damper. Low-pass filter characteristics of the shimmy damper at reverse flow was demonstrated which means that the shimmy damper could alleviate the high speed ripple pressures induced by the unbalance oscillation of tire in vehicle driving. The parameter sensitivity analysis was also conducted to identify the dominant parameters for the damper performance.

Analysis Model Development and Sensitivity Analysis on Design Parameters of the Neutral Valve for HST (HST 중립밸브의 해석모델 개발 및 설계변수 민감도 분석)

  • Kim, D.M.;Jang, J.S.;Kim, S.C.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • The neutral valve for controlling the HST is one of the important valves for the vehicle control. Neutral valve takes a role of blocking or transmitting power to the vehicle. The operating principle of the neutral valve was developed through the analysis model. We also investigated the logical validity by analyzing the results of the analysis model. The analysis model was developed by using SimulationX witch is commercial software. The number of holes in the piston was selected as a variable initial compression of the spring, and the magnitude of the pressure pulsations and the diameter of the orifice for the sensitivity analysis were performed to design sensitivity analysis of the neutral valve.

Design Review for suspension system of magnetically levitated vehicle (자기부상차량 현가시스템 설계에 대한 고찰)

  • Lee, Nam-Jin;Yang, Bang-Sub;Kim, Chul-Guen
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.364-371
    • /
    • 2008
  • In general Maglev (magnetically levitated vehicle) has about 4 or 5 bogies per one vehicle to improve stability of electromagnetic suspension and 4 air-spring per one bogie are to be equipped to prevent form excessive yawing and pitching motion of bogie. 3 leveling valve per one vehcile will be applied to control the height of carbody. This kind of vehicle is on the design stage, and design review will be carried out before manufacture. The suspension system of Maglev consists of 16 of air-spring, auxiliray reservoir and orifice, 3 leveling valve, which are different composition comparative to conventional rolling stock. To improve operational reliability of vehicle, additional ventilation valve will be equipped with airspring. This kind of new design concept requires fundamental design review. In this study, suspension systems of Maglev will be built as mathematical model. Then designed suspension system will be reviewed in view of various points through proposed suspension simulation.

  • PDF

Static Ejection Test for Separation Analysis of 2,000lb-Class Store (2,000lb급 장착물의 분리분석을 위한 지상투하시험)

  • Byungjoon Shin;Young-hee Jo;Min-soo Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.344-351
    • /
    • 2023
  • Static ejection tests were conducted using the 2,000lb-Class Store to provide ejector model for the store separation simulation. In this study, static ejection test device for 2,000lb-class store was constructed and reaction force applied to store was measured over time. In addition, the trajectories of the ejected store were obtained using photogrammetry and compared with the simulations using developed ejector model. The results of the static ejection test were analyzed to determine the cartridge-orifice combination to be used for store separation. Flight tests were performed by applying the analysis results and verified that the store was safely separated from the aircraft.

Implementation of The Fluid Circulation Blood Pressure Simulator (유체 순환 혈압 시뮬레이터의 구현)

  • Kim, C.H.;Lee, K.W.;Nam, K.G.;Jeon, G.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

A Study on Hydraulic Modifications of Low-Pressure Membrane Inlet Structure with CFD and PIV Techniques (CFD와 PIV 기법을 이용한 저압막 유입부 수리구조 개선에 관한 연구)

  • Oh, Jeong Ik;Choi, Jong-Woong;Lim, Jae-Lim;Kim, Donggil;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.607-618
    • /
    • 2015
  • This study was conducted to suggest hydraulic modification for improving evenness of inlet flow distribution into side stream type low-pressure MF (microfiltration) module using CFD (computational fluid dynamics) simulation and PIV (particle image velocimetry) techniques. From the results of CFD simulation for various typed inlet structure, it was investigated that installing internal orifice baffle in inlet the distribution channel could improve the evenness of inlet flow distribution over about 40%. Also, from the results of PIV measurements which were carried out for verifying the CFD simulation, it was observed that the momentum of the water body coming from the opposite side of the inlet was relatively larger. This momentum would generate strong shear force in the near of inlet side wall. On the other hands, occurrence of dead zone and eddy flow was confirmed in the opposite side.

A Numerical Simulation of Aerodynamic Focusing of Nanoparticles in a Wide Range of 30nm~3000nm (30nm~3000nm 광범위 직경 입자의 공기역학적 집속에 대한 수치해석)

  • Lee, Kwang-Sung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.7 no.4
    • /
    • pp.123-130
    • /
    • 2011
  • Previous designs of conventional aerodynamic lenses have a limitation of narrow range of focusable particle size, e.g. 30 to 300nm or 3 to 30nm. To enlarge the focusable size range to 30-3000nm, it is necessary to avoid a significant loss of particles larger than 300nm inside the lenses. From numerical simulations on size-resolved particle trajectories, we confirmed that the traveling losses of such large particles could be avoided only when the radial position of particles approaching the orifice lens was near the lens axis. Hence, we designed the lens system consisting of a converging-diverging nozzle and 7 orifices to fulfill the requirement. In particular, the orifices were aligned in a way that their diameters were descending and ascending to the downstream. As a result, 30-2800nm particles can be focused to the particle beam of 0.2mm or less in radius with above 85% transmission efficiency. Even $10{\mu}m$ particles can be focused with 74% of transmission efficiency.

A Study on the Performance Analysis and Design of Cathode in Fuel Cells (연료전지 전극(Cathode)의 성능해석 및 설계에 관한 연구)

  • Kim, H.G.;Kang, S.S.;Song, H.Y.;Kang, Y.W.;Kwac, L.K.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.75-79
    • /
    • 2007
  • The cathode design is one of the most important parts in order to enhance the performance of fuel cells. A 3-D model of the porous oxygen reducing cathode with perforated current collectors is analysed for the enhanced design in fuel cells. Simulation is performed using equations of electric potential balance, momentum balance, and mass balance. The gas concentrations are quite large and are significantly affected by the reactions that take place. The weight fraction of oxygen, velocity field for the gas phase, and local overvoltage are illustrated in the porous reactive cathode layer. The current density is also analysed and the result shows the distribution and variation are stated in a wide range. It is found that the rate of reaction and the current production is higher beneath the orifice, and decreases as the distance to the gas inlet increases. The significance of the results is discussed in the viewpoint of the mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in this design and at these conditions.