Browse > Article

A Numerical Simulation of Aerodynamic Focusing of Nanoparticles in a Wide Range of 30nm~3000nm  

Lee, Kwang-Sung (School of Mechanical Engineering, Pusan Nat'l University)
Lee, Donggeun (School of Mechanical Engineering, Pusan Nat'l University)
Publication Information
Particle and aerosol research / v.7, no.4, 2011 , pp. 123-130 More about this Journal
Abstract
Previous designs of conventional aerodynamic lenses have a limitation of narrow range of focusable particle size, e.g. 30 to 300nm or 3 to 30nm. To enlarge the focusable size range to 30-3000nm, it is necessary to avoid a significant loss of particles larger than 300nm inside the lenses. From numerical simulations on size-resolved particle trajectories, we confirmed that the traveling losses of such large particles could be avoided only when the radial position of particles approaching the orifice lens was near the lens axis. Hence, we designed the lens system consisting of a converging-diverging nozzle and 7 orifices to fulfill the requirement. In particular, the orifices were aligned in a way that their diameters were descending and ascending to the downstream. As a result, 30-2800nm particles can be focused to the particle beam of 0.2mm or less in radius with above 85% transmission efficiency. Even $10{\mu}m$ particles can be focused with 74% of transmission efficiency.
Keywords
Aerodynamic lens; Nanoparticle focusing; Single Particle Mass Spectrometer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995a, "Generation Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions," Aerosol Sci. Technol., Vol. 22, pp. 293-313.   DOI   ScienceOn
2 Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995b, "Generation Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions," Aerosol Sci. Technol., Vol. 22, pp. 314-324.   DOI   ScienceOn
3 Lee, D., Park, K. and Zachariah, M. R., 2005, "Determination of size distribution of polydisperse nanoparticles with Single Particle Mass Spectrometry: The role of Ion Kinetic Energy," Aerosol Sci. Technol., Vol. 39, pp. 162-169.   DOI   ScienceOn
4 Lee, D., Miller, A., Kittelson, D. and Zachariah, M. R., 2006, "Characterization of metal-bearing diesel nanoparticles using single particle mass spectrometry," J. Aerosol Sci., Vol. 37(1), pp. 88-110.   DOI   ScienceOn
5 Lee, K.‐S., Cho, S.‐W. and Lee, D., 2008, "Development and experimental evaluation of aerodynamic lens as an aerosol inlet of single mass spectrometry," J. Aerosol Sci., Vol. 39, pp. 287-304.   DOI   ScienceOn
6 Dong. Y., Bapat, A., Hilchie, S., Kortshagen, U. and Campbell, S. A., 2004, "Generation of Nano-Sized Free Standing Single Crystal Silicon Particles," J. Vacuum Sci. & Technol. B: Microelectronics and Nanometer Structures, 22(4), pp. 1923-1930.   DOI
7 Fonzo, F. D., Gidwani, A., Fan, M. H., Neumann, D., Iordanoglou, D. I. Heberlein, J. V. R., Mc-Murry, P. H., Girshick, S. L., Tymiak, N., Gerberich, W. W. and , Rao, N. P., 2000, "Focused Nanoparticle‐Beam Deposition of Patterned Microstructures," Appl. Phys. Lett., 77(6), pp. 910-912.   DOI   ScienceOn
8 Qi, L., MuMurry, P. H., Norris, D. J. and Girshick, S. L., 2010, "Micropattern Deposition of Colloidal Semiconductor Nanocrystals by Aerodynamic Focusing," Aerosol Sci. Technol., Vol. 44, pp. 55-60.   DOI   ScienceOn
9 Harris, W. A., Reilly, P. T. A. and Whitten, W. B., 2006, "Aerosol MALDI of peptides and proteins in an ion trap mass spectrometer: Trapping, resolution and signal-to-noise," Int. J. Mass Spectrom.,258, pp. 113-119.   DOI   ScienceOn
10 Murphy, W. K. and Sears, G. W., 1964, "Production of Particulate Beams," J. Appl. Phys., Vol. 35, pp. 1986-1987.   DOI
11 Das, R. and Phares, D. J., 2004, "Expansion of an ultrafine aerosol through a thin-plate orifice," J. Aerosol Sci., Vol. 35, pp. 1091-1103.   DOI   ScienceOn
12 Deng, R., Zhang, X., Smith, K. A., Wormhoudt, J., Lewis, D. K. and Freedman, A., 2008, "Focusing Particle with Diameters of 1 to 10 Microns into Beams at Atmospheric Pressure," Aerosol Sci. Technol., Vol. 42, pp. 899-915.   DOI   ScienceOn
13 Chen, D. R. and Pui, Y. H., 1995, "Numerical and Experimental Studies of Particle Deposition in a Tube with a Conical Contraction-Laminar Flow Regime," J. Aerosol Sci., Vol. 26(4), pp. 563-574.   DOI   ScienceOn
14 Wang, X. and McMurry, P. H., 2006a, "An Experimental Study of Nanoparticle Focusing with Aerodynamic Lenses," Int. J. Mass Spectrom., Vol. 258, pp. 30-36.   DOI
15 Lee, K.-S., Kim, S. and Lee, D., 2009, "Aerodynamic focusing of 5‐50nm nanoparticles in air," J. Aerosol Sci., Vol. 40, pp. 1010-1018.   DOI   ScienceOn
16 Wang, X. and McMurry, P. H., 2006b, "A Design Tool for Aerodynamic Lens Systems," Aerosol Sci. Technol., Vol. 40, pp. 320-334.   DOI   ScienceOn
17 Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J. L., Jayne, J. T., Kolb, C. E., Morris, J. and Davidovits, P., 2004, "Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens-Nozzle System," Aerosol Sci. Technol., Vol. 38, pp. 619-638.   DOI   ScienceOn
18 Wang, X., Gidwani, A., Girshick, S. L. and McMury, P. H., 2005, "Aerodynamic Focusing of Nanoparticles: II. Numerical Simulation of Particle Motion Through Aerodynamic Lenses," Aerosol Sci. Technol., Vol. 39, pp. 624-636.   DOI   ScienceOn
19 TSI, 2004, Product information of Series 3800 Aerosol Time-of-Flight Mass Spectrometers with Aerodynamic Focusing Lens Technology, www.tsi.com.
20 Hari, S., McFarland, A. R. and Hassan, Y. A., 2007, "CFD Study on the Effects of the Large Particle Crossing Trajectory Phenomenon on Virtual Impactor Performance," Aerosol Sci. Technol., Vol. 41, pp. 1040-1048.   DOI   ScienceOn
21 Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T., Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R. and Deshler, T., 2007, "Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurement for the Aerodyne Aerosol Mass Spectrometer," Aerosol Sci. Technol., Vol. 41, pp. 721-733.   DOI   ScienceOn
22 Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E. and Worsnop, D. R., 2000, "Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles," Aerosol Sci. Technol., Vol. 33, pp. 49-70.   DOI   ScienceOn