• Title/Summary/Keyword: Simulation Methodology

Search Result 1,687, Processing Time 0.03 seconds

Comparing Methodology of Building Energy Analysis - Comparative Analysis from steady-state simulation to data-driven Analysis - (건물에너지 분석 방법론 비교 - Steady-state simulation에서부터 Data-driven 방법론의 비교 분석 -)

  • Cho, Sooyoun;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2017
  • Purpose: Because of the growing concern over fossil fuel use and increasing demand for greenhouse gas emission reduction since the 1990s, the building energy analysis field has produced various types of methods, which are being applied more often and broadly than ever. A lot of research products have been actively proposed in the area of the building energy simulation for over 50 years around the world. However, in the last 20 years, there have been only a few research cases where the trend of building energy analysis is examined, estimated or compared. This research aims to investigate a trend of the building energy analysis by focusing on methodology and characteristics of each method. Method: The research papers addressing the building energy analysis are classified into two types of method: engineering analysis and algorithm estimation. Especially, EPG(Energy Performance Gap), which is the limit both for the existing engineering method and the single algorithm-based estimation method, results from comparing data of two different levels- in other words, real time data and simulation data. Result: When one or more ensemble algorithms are used, more accurate estimations of energy consumption and performance are produced, and thereby improving the problem of energy performance gap.

Research on Experimentation Methodology for Analysing Parameter Sensitivity of Hard-Kill Torpedo Defence System in Engagement Stage (하드-킬 어뢰 방어체계 최종 교전단계에서의 파라미터 민감도 분석을 위한 모의시험 모델 연구)

  • Cho, Hyunjin;Kim, Wanjin
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • This paper introduces experimental design and components model for analysing the impact of parameter(in the field of kinematics and sensor) on performance of hard-kill torpedo defence system. The simulation is implemented at the level of engagement and its scope is limited to final stage of engagement where main function of anti-torpedo system is operating. It improves the fidelity of physical realism by precise model of simulation components in the perspectives of kinematics, sensor capability and acoustic detection theory. This paper provides the experimentation methodology for evaluating parameter sensitivity which is required to analyze in advance of development the defense system with novel concepts. In addition, the experimental result shows the tendency of defense capability according to parameter adjustments.

Devlopment HLA DEVS-Obj-C Environment for Distributed Simulation (분산 시뮬레이션을 위한 HLA DEVS-Obj-C 환경 구축)

  • 최두진;조대호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.85-89
    • /
    • 2002
  • Development of distributed simulation environment must be required in order to simulate the distributed models regionally and inter-operate with running simulations individually, Simulation based on DEVS formalism is difficult to simulate the distributed models. DEVS formalism is modeling methodology. To specify model, this formalism separates behavior and structure, therefore it is able to design complex model easily. HLA is standard framework of distribute simulation environment, It is defined to facilitate the interoperability and the reusability. RTI (Run Time Infrastructure) is software that provides common service to simulation systems and implementation of the HLA Interface Specification. Method of implementation is that modules cooperating with RTI are added to simulator on DEVS simulation environment. On the DEVS simulation environment (DEVS-Obj -C) that already developed, Highest class of abstract simulator uses service that RTI provide, then This environment is able to change DEVS model into Federate and run distribute simulation that inter-operates with the RTI. Because this distributed simulation environment includes convenience of modeling that obtains through the DEVS formalism and accompanies HLA standard, this environment make it possible to simulate with_ complex systems and heterogeneous simulations

  • PDF

A Study on Discrete-Continuous Modeling Methodology for Supply Chain Simulation (공급사슬시뮬레이션을 위한 이산-연속 모델링 방법에 관한 연구)

  • 김서진;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.142-149
    • /
    • 2000
  • Most of supply chain simulation models have been developed on the basis of discrete-event simulation. Since supply chain systems are neither completely discrete nor continuous, the need of constructing a model with aspects of both discrete-event simulation and continuous is provoked, resulting in a combined discrete-continuous simulation. Continuous simulation concerns the modeling over time of a system by a representation in which the state variables change continuously with respect to time. In this paper, an architecture of combined modeling for supply chain simulation is proposed, which presents the equation of continuous part in supply chain and how these equations are used supply chain simulation models. A simple supply chain model is demonstrated the possibility and the capability of this approach.

  • PDF

Implementation of IEEE 802.11n MAC using Design Methodology (통합된 구현 방식을 이용한 IEEE 802.11n MAC의 설계)

  • Chung, Chul-Ho;Lee, Sun-Kee;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4B
    • /
    • pp.360-367
    • /
    • 2009
  • In this paper, we propose a design methodology of IEEE 802.11n MAC which aims to achieve the higher throughput of more than 100Mbps in downlink as measured at the MAC-SAP and present the implementation results of MAC using the proposed design methodology. With our proposed methodology, different from the conventional design flow which has the separate codes for the protocol validation, for the network simulation, and for the system implementation, the unified code can be used for the network simulation and the implementation of software and hardware. Our MAC architecture is partitioned into two parts, Upper-layer MAC and Lower-layer MAC, in order to achieve the high efficiency for the new features of IEEE 802.11n standard. They are implemented in software and hardware respectively. The implemented MAC is tested on ARM based FPGA board.

Assessing Traffic Safety Benefits of Technical Regulation for Pedestrian Leg (보행자보호를 위한 다리기준의 교통안전 효과평가)

  • Oh, Cheol;Kim, Beom-Il;Kang, Youn-Soo;Shin, Monn-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • This study proposes a methodology to assess the traffic safety benefits of technical regulation for pedestrian leg. Traffic safety benefit is defined as the injury reduction in this study. Actual accident analysis and simulation experiments using LS-Dyna3d are conducted to establish statistical models for developing the methodology. The relationship between collision speed and parameters of the regulation is explored. An application example of the proposed methodology is also presented for more comprehensive understanding. It is believed that the proposed methodology would be greatly utilized in developing various technologies and policies to protect pedestrian.

A Design Methodology of Digital Controller Considering Time Delay Effect for a Modular Multilevel Converter VSC HVDC System (모듈형 멀티레벨 전압형 HVDC 시스템을 위한 시간 지연을 고려한 디지털 제어기의 설계)

  • Song, Ji-Wan;Ku, Nam-Joon;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • A modular multilevel converter is widely adapted for a high-voltage direct current power transmission system. This study proposes a design methodology for a novel digital control that mitigates the negative effects caused by time delay, including communication transport delay for a modular multilevel converter. The modeling and negative effect of time delay are analyzed theoretically in a frequency domain, and its compensation methodology based on an inverse model is described fully with practical considerations. The proposed methodology is verified through several simulation results using a modular 21-level converter system.

An Optimal Design Methodology of an Interleaved Boost Converter for Fuel Cell Applications

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.319-328
    • /
    • 2010
  • In this paper, an optimal selection methodology for the number of phases will be proposed for an interleaved boost converter (IBC). Also, the analysis of the input current ripple according to CCM and DCM is carried out. The proposed design methodology will be theoretically analyzed, and its validity verified by simulation as well as with experimental results. Moreover, a comparison of cost and efficiency based on a 600W laboratory prototype using the Ballard NEXA 1.2kW PEMFC system is demonstrated.

Methodology for Apartment Space Arrangement Based on Deep Reinforcement Learning

  • Cheng Yun Chi;Se Won Lee
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • This study introduces a deep reinforcement learning (DRL)-based methodology for optimizing apartment space arrangements, addressing the limitations of human capability in evaluating all potential spatial configurations. Leveraging computational power, the methodology facilitates the autonomous exploration and evaluation of innovative layout options, considering architectural principles, legal standards, and client re-quirements. Through comprehensive simulation tests across various apartment types, the research demonstrates the DRL approach's effec-tiveness in generating efficient spatial arrangements that align with current design trends and meet predefined performance objectives. The comparative analysis of AI-generated layouts with those designed by professionals validates the methodology's applicability and potential in enhancing architectural design practices by offering novel, optimized spatial configuration solutions.

ENHANCEMENT OF AVAILABILITY OF 4D SIMULATION BASED ON BUILDING INFORMATION MODEL TECHNOLOGY

  • Jong Jin Park;Eon Yong Kim;Hyun Cho;Han Jong Jun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.579-586
    • /
    • 2009
  • 4D simulation integrates the 3 dimensional model of a building with the construction schedule, and it leads to the possibility of virtually checking the construction process and the building itself in advance. However, the existing problem of 4D simulation is the difference between the demands of architects, engineers, and construction site workers in 4D simulation. This study suggests the possible way to enhance the availability of 4D simulation, considering more the practical demands from the construction site. In order to conduct this study, we build a 3D BIM model of a business-residential complex and link the model with the pre-defined construction schedule in order to make a 4D simulation. This study concludes with the optimized 4D simulation methodology based on BIM model considering the demands in perspective of the construction site. It would contribute to the harmonic collaboration among architects, engineers, and labors in the construction site when using 4D simulation based on BIM model.

  • PDF