• Title/Summary/Keyword: Simulation EnergyPlus

Search Result 122, Processing Time 0.025 seconds

The Development of the Simulation Input Library (시뮬레이션 입력값 라이브러리 구축)

  • Kang, Su-Hyun;Yu, Ji-Suck;Baek, Seung-Hyo;Cho, Young-Hum;Kim, Kwang-Woo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.287-292
    • /
    • 2011
  • It has found that the using library base on criteria of a foreign country resulted in problem of reliability. In order to obtain reliable result, it was necessary to develop the simulation input library based on domestic condition. So, this study was conducted for making the library in accordance with domestic condition when doing simulation modeling about the exist and new buildings. The range of library were consist of material, facility systems, schedules and weather data. And Energy Plus program was used when making library. We hope that the developed library will contribute to reliability when simulating exist and new buildings.

  • PDF

Forecasted Weather based Weather Data File Generation Techniques for Real-time Building Simulation (실시간 빌딩 시뮬레이션을 위한 예측 기상 기반의 기상 데이터 파일 작성 기법)

  • Kwak, Young-Hoon;Jeong, Yong-Woo;Han, Hey-Sim;Jang, Cheol-Yong;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.8-18
    • /
    • 2014
  • Building simulation is used in a variety of sectors. In its early years, building simulation was mainly used in the design phase of a building for basic functions. Recently, however, it has become increasingly important during the operating phase, for commissioning and facility management. Most building simulation tools are used to estimate the thermal environment and energy consumption performance, and hence, they require the inputting of hourly weather data. A building simulation used for prediction should take into account the use of standard weather data. Weather data, which is used as input for a building simulation, plays a crucial role in the prediction performance, and hence, the selection of appropriate weather data is considered highly important. The present study proposed a technique for generating real-time weather data files, as opposed to the standard weather data files, which are required for running the building simulation. The forecasted weather elements provided by the Korea Meteorological Administration (KMA), the elements produced by the calculations, those utilizing the built-in functions of Energy Plus, and those that use standard values are combined for hourly input. The real-time weather data files generated using the technique proposed in the present study have been validated to compare with measured data and simulated data via EnergyPlus. The results of the present study are expected to increase the prediction accuracy of building control simulation results in the future.

Performance Analysis on Combined Horizontal Ground Source Heat Pump with Earth tube using EnergyPlus (EnergyPlus를 이용한 수평형의 지열 히트펌프와 어스튜브를 조합한 시스템의 성능 검토)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2017
  • This study is performed to performance of the combined system the GSHP (Ground Source Heat Pump) system with the Earth tube system using EnergyPlus program. The Earth tube system using fan is characteristics as supply lower (higher) air temperature than outdoor air temperature in cooling and heating seasons, the GSHP system is characteristics as small indoor air temperature variation range. As the results of Earth tube + GSHP system simulation, GSHP power can be reduced than the GSHP single operation as 17.3% in cooling seasons and 32.5% in heating seasons, the GSHP design capacity can be replaced more small size.

Performance Assessment of Building Envelopes I: Double Skin Facade (외피 친환경 성능평가 I: 이중외피)

  • Kim, Deuk-Woo;Park, Cheol-Soo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.77-82
    • /
    • 2009
  • Many countries have been interested in sustainable development of buildings for environmental preservation. Thus it is significant to assess building envelopes in terms of $CO_2$ emissions owing to Kyoto Protocol. In this paper, a Double Skin Facade(DSF) installed in a general office building was assessed by $CO_2$ emissions(one of the performance-based assessment). To predict $CO_2$ emissions caused by the building energy consumption, the dynamic simulation program(Energy Plus) and $CO_2$ emission factor was used. Because DSF has various airflow regimes, pre-simulation runs were conducted to decide proximate optimal airflow regimes depending on seasonal variation. It is shown that the DSF can achieve 17.1-36.5% of annual energy savings.

  • PDF

A Simulation Study on the Gasifier Performance in the Coal/Biomass Mixture (석탄과 바이오매스 혼합공급에 따른 가스화 특성 모사 연구)

  • Wang, Hong-Yue;Shim, Hyun-Min;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.784-787
    • /
    • 2007
  • A process flowsheet simulation model based on ASPEN PLUS was developed to investigate the effect of co-gasification of coal and rice husk on the gasifier performance and pollutant emissions in IGCC power plant. The analyses were done for an 02-blown, pulverized gasifier using coal and rice husk as feedstock, parameter employed the blending ratio of rice husk in coal were investigated. From the simulation results, it was found that gaseous pollutant emissions were reduced substantially with the increase of the blending ratio of rice husk. An optimum range between 15% and 25% rice husk-to-coal ratio was found to be the optimum point in terms of gaseous pollutant emission per energy output for sui fur and nitrogen compounds.

  • PDF

Energy Performance and Operating Cost Assessment for Implementing Green Remodeling Technologies in a Detached House (단독주택 건물 그린리모델링에 따른 건물 에너지 성능과 운전비용 절감 효과 평가)

  • Byonghu Sohn;Su-In Lee;Jae-Sik Kang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.27-38
    • /
    • 2023
  • The Government the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of buildings and to promote green growth policy in construction sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. Green remodeling reinforced the insulation of the exterior walls and roofs of the buildings and replaced high-efficiency windows and doors. In this study, the energy performance before and after green remodeling applied in a detached house was comparatively analyzed for baseline scenario and three different ones, ALT 1, ALT 2 and ALT 3. A building modeling and simulation software (DesignBuilder V7.0) with EnergyPlus (V9.4) calculation engine was used to calculate the energy demand and energy consumption for each scenario. Based on the calculation results of the building's energy demand for baseline, it was determined that the target building required more heating energy than cooling energy. The simulation results also showed that the implementation of building envelope performance improvement technologies (ALT 1) could notably decrease the heating energy consumption of the building. After the remodeling (ALT 1), the source energy consumption per unit floor area was assessed to be reduced by 65.2%, compared to prior remodeling of 338.7 kWh/m2 -y. Meanwhile, ALT 2 can achieve energy savings of 67.7% and ALT 3 can achieve savings of 73.1%. Following completion of the remodeling project, actual construction costs, and on-site measurements and verification results will be gathered and compared with the simulation results. Additionally, economic analysis including construction costs and payback period will be conducted using actual site data.

The Evaluation of Ceiling Depth Impact on Lighting and Overall Energy Consumption of a Building with Top-lighting System

  • Amina, Irakoze;Kee, Han Ki;Lee, Young-A
    • Architectural research
    • /
    • v.22 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The purpose of this study was to evaluate the variation in building energy predictions caused by simulation settings related to building envelop thickness. The study assessed the ceiling depth impact on skylight energy performance through OpenStudio integrated Radiance and EnergyPlus simulation programs. A ceiling as deep as 1.5 to 3m was analyzed for skylight to roof ratios from 1% to 25%. The results indicated that the building ceiling depth negatively affected the capability of skylights to significantly reduce building energy consumption. Through a parametric analysis, the study concluded that 8%, 9%, 10% and 11% skylight to roof ratio were optimal in terms of total building energy consumption for a ceiling depth of 1.5m, 2m, 2.5m and 3m, respectively. In addition, the results showed that the usually recommended 5% skylight to roof ratio was only efficient when no ceiling depth was included in the simulation model. Furthermore, the study indicated that the building energy saved by the optimal skylight of each ceiling depth decreased as the ceiling depth deepened. The highest total building energy reduction was 9%, 7%, 5% and 3% for a ceiling depth of 1.5m, 2m, 2.5m and 3m, respectively. This study induced that the solar heat gains and daylight visible transmittance by ceiling depth were crucial in the predictions of skylight energy performance and should not be neglected through building simulation simplifications as it is commonly done in most simulation programs' settings.

The analysis of the renewable energy supply ratio for the school building applied PV system (PV 시스템이 설치된 대학건물의 전력 생산에 따른 신재생에너지 공급비율 분석)

  • Kang, Su-Hyun;Lee, Yong-Ho;Hwang, Jung-Ha;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.50-57
    • /
    • 2012
  • Recently the renewable energy has been used widely and the importance of renewable sources is bigger than before. And the government enforced a law to the public buildings to install the renewable energy facilities. The capacity of facilities was 5% of total construction cost until April 13, 2011. Since then, the government changed the law from 5% of total construction cost to 10% of predicted energy usage for the resonable use of the renewable energy facilities. In this study, the comparative analysis is conducted according to the law to the building installed PV system through the Energy Plus simulation. And the method for improving renewable energy supply ratio was analyzed using existing PV array. Adjusting the PV array angle is the best way to generate more electric power without additional fee. When applying the month optimum angle, 3,600kWh of electric power are more generated compared to the existing angle.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

3D BIM-based Building Energy Efficiency Solution for Carbon Emission Reduction (탄소저감을 위한 3D BIM 기반 건물 에너지 효율화 방안)

  • Lee, Dong Hwan;Kwon, Kee Jung;Shin, Ju Ho;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1235-1242
    • /
    • 2013
  • This study deals with the BIM (Building Information Modeling)-based energy performance analysis implemented in EnergyPlus. The BIM model constructed at Revit is updated at Design Builder, adding HVAC models and converted compatibly with the EnergyPlus. We can obtain the input values about HVAC system and building environment such as HVAC system efficient, the number of air changes and energy consumption of equipment on applying GAs (Genetic algorithms). After modification about HVAC system, Optimization about HVAC system energy consumption can be analyzed. In order to maximize the building energy performance, a genetic algorithm (GA)-based optimization technique is applied to the modified HVAC models. Throughout the proposed building energy simulation, finally, the best optimized HVAC control schedule for the target building can be obtained in the form of "supply air temperature schedule". Throughout the supply air temperature schedule is applied to energy performance simulation, we obtained energy saving effect result on simulation.