• Title/Summary/Keyword: Simulation Data

Search Result 14,495, Processing Time 0.056 seconds

Significance of the Failure Patterns in Cervical Lymph Nodes Achieving a Complete Response to Radical Radiotherapy (근치적 방사선치료에 완전반응을 보인 경부 림프절에서의 재발 양상 및 그 의의)

  • Nam, Ji-Ho;Kim, Won-Taek;Ki, Yong-Kan;Kim, Dong-Hyun;Choi, Young-Jin;Cho, Kyu-Sup;Lee, Jin-Choon;Lee, Byung-Joo;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Purpose: This study was performed to examine the neck failure patterns after a complete response (CR) to definitive radiotherapy for advanced head and neck cancer patients, as well as evaluate the clinical significance of the results of this study. Materials and Methods: Between 1987 and 2008, the clinical data of patients who had been treated with radical radiotherapy for primary squamous cell carcinomas and enlarged cervical lymph nodes was analyzed retrospectively. Ultimately, the cases that showed CR of the cervical lymph node lesions to full-dose radiotherapy were included in this study. The recurrent rate and sites in the cervical lymphatic area were evaluated periodically by radiologic imaging studies, along with some factors which might have affected the rate of recurrence. Results: A total of 73 patients who achieved CR in neck area after radiotherapy were included in this study. The rate of subsequent neck failure among those patients was 19.2%. There was only a 5.5% failure rate in the 55 patients who underwent radiotherapy in their primary site. Eighty percent of the recurrent cases were found within 3 years (median follow-up, 68 months). The majority of neck recurrent cases (47%) were accompanied with the failure of the primary lesions. The initial response of the primary site and the method of radiotherapy simulation were significant prognostic factors associated with the nodal recurrence rate. Conclusion: The recurrence rate of cervical nodes in patients with CR to radiotherapy in the primary site and neck area was about 5%. These patients could be followed up with close observation without a planned neck dissection.

Dosimetric Influence of Implanted Gold Markers in Proton Therapy for Prostate Cancer (전립선암에 대한 양성자치료에서 금마커에 의한 방사선 선량분포의 영향)

  • Kwak, Jung-Won;Shin, Jung-Wook;Kim, Jin-Sung;Park, Sung-Yong;Shin, Dong-Ho;Yoon, Myong-Geun;Park, So-Ah;Kim, Dong-Wook;Lim, Young-Gyeung;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2010
  • This study examined the dosimetric influence of implanted gold markers in proton therapy and the effects of their positions in the spread-out Bragg peak (SOBP) proton beam. The implanted cylindrical gold markers were 3 mm long and 1.2 mm in diameter. The dosimetric influence of the gold markers was determined with markers at various locations in a proton-beam field. Spatial dose distributions were measured using a three-dimensional moving water phantom and a stereotactic diode detector with an effective diameter of 0.5 mm. Also, a film dosimetry was performed using Gafchromic External Beam Treatment (EBT) film. The GEANT4 simulation toolkit was used for Monte-Carlo simulations to confirm the measurements and to construct the dose-volume histogram with implanting markers. Motion data were obtained from the portal images of 10 patients to investigate the effect of organ motions on the dosimetric influence of markers in the presence of a rectal balloon. The underdosed volume due to a single gold marker, in which the dose was less than 95% of a prescribed amount, was 0.15 cc. The underdosed volume due to the presence of a gold marker is much smaller than the target volume. However, the underdosed volume is inside the gross tumor volume and is not smeared out due to translational prostate motions. The positions of gold markers and the conditions of the proton-beam field give different impacts on the dose distribution of a target with implanted gold markers, and should be considered in all clinical proton-based therapies.

Design and Implementation of Game Server using the Efficient Load Balancing Technology based on CPU Utilization (게임서버의 CPU 사용율 기반 효율적인 부하균등화 기술의 설계 및 구현)

  • Myung, Won-Shig;Han, Jun-Tak
    • Journal of Korea Game Society
    • /
    • v.4 no.4
    • /
    • pp.11-18
    • /
    • 2004
  • The on-line games in the past were played by only two persons exchanging data based on one-to-one connections, whereas recent ones (e.g. MMORPG: Massively Multi-player Online Role-playings Game) enable tens of thousands of people to be connected simultaneously. Specifically, Korea has established an excellent network infrastructure that can't be found anywhere in the world. Almost every household has a high-speed Internet access. What made this possible was, in part, high density of population that has accelerated the formation of good Internet infrastructure. However, this rapid increase in the use of on-line games may lead to surging traffics exceeding the limited Internet communication capacity so that the connection to the games is unstable or the server fails. expanding the servers though this measure is very costly could solve this problem. To deal with this problem, the present study proposes the load distribution technology that connects in the form of local clustering the game servers divided by their contents used in each on-line game reduces the loads of specific servers using the load balancer, and enhances performance of sewer for their efficient operation. In this paper, a cluster system is proposed where each Game server in the system has different contents service and loads are distributed efficiently using the game server resource information such as CPU utilization. Game sewers having different contents are mutually connected and managed with a network file system to maintain information consistency required to support resource information updates, deletions, and additions. Simulation studies show that our method performs better than other traditional methods. In terms of response time, our method shows shorter latency than RR (Round Robin) and LC (Least Connection) by about 12%, 10% respectively.

  • PDF

A development of DS/CDMA MODEM architecture and its implementation (DS/CDMA 모뎀 구조와 ASIC Chip Set 개발)

  • 김제우;박종현;김석중;심복태;이홍직
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1210-1230
    • /
    • 1997
  • In this paper, we suggest an architecture of DS/CDMA tranceiver composed of one pilot channel used as reference and multiple traffic channels. The pilot channel-an unmodulated PN code-is used as the reference signal for synchronization of PN code and data demondulation. The coherent demodulation architecture is also exploited for the reverse link as well as for the forward link. Here are the characteristics of the suggested DS/CDMA system. First, we suggest an interlaced quadrature spreading(IQS) method. In this method, the PN coe for I-phase 1st channel is used for Q-phase 2nd channels and the PN code for Q-phase 1st channel is used for I-phase 2nd channel, and so on-which is quite different from the eisting spreading schemes of DS/CDMA systems, such as IS-95 digital CDMA cellular or W-CDMA for PCS. By doing IQS spreading, we can drastically reduce the zero crossing rate of the RF signals. Second, we introduce an adaptive threshold setting for the synchronization of PN code, an initial acquistion method that uses a single PN code generator and reduces the acquistion time by a half compared the existing ones, and exploit the state machines to reduce the reacquistion time Third, various kinds of functions, such as automatic frequency control(AFC), automatic level control(ALC), bit-error-rate(BER) estimator, and spectral shaping for reducing the adjacent channel interference, are introduced to improve the system performance. Fourth, we designed and implemented the DS/CDMA MODEM to be used for variable transmission rate applications-from 16Kbps to 1.024Mbps. We developed and confirmed the DS/CDMA MODEM architecture through mathematical analysis and various kind of simulations. The ASIC design was done using VHDL coding and synthesis. To cope with several different kinds of applications, we developed transmitter and receiver ASICs separately. While a single transmitter or receiver ASC contains three channels (one for the pilot and the others for the traffic channels), by combining several transmitter ASICs, we can expand the number of channels up to 64. The ASICs are now under use for implementing a line-of-sight (LOS) radio equipment.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • 금동혁;김용운
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-83
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well. 2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air. 3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying. 4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis. 5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time. 6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture. 7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation. 8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise. 11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss. 12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method. 13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated. Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year. 14. Required fan horsepower and energy for the intermittent fan operation were 3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation. 15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use. 16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

  • PDF

Simulation of Drying Grain with Solar-Heated Air (태양에너지를 이용한 곡물건조시스템의 시뮬레이션에 관한 연구)

  • Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.64-64
    • /
    • 1979
  • Low-temperature drying systems have been extensively used for drying cereal grain such as shelled corn and wheat. Since the 1973 energy crisis, many researches have been conducted to apply solar energy as supplemental heat to natural air drying systems. However, little research on rough rice drying has been done in this area, especially very little in Korea. In designing a solar drying system, quality loss, airflow requirements, temperature rise of drying air, fan power and energy requirements should be throughly studied. The factors affecting solar drying systems are airflow rate, initial moisture content, the amount of heat added to drying air, fan operation method and the weather conditions. The major objectives of this study were to analyze the effects of the performance factors and determine design parameters such as airflow requirements, optimum bed depth, optimum temperature rise of drying air, fan operation method and collector size. Three hourly observations based on the 4-year weather data in Chuncheon area were used to simulate rough rice drying. The results can be summarized as follows: 1. The results of the statistical analysis indicated that the experimental and predicted values of the temperature rise of the air passing through the collector agreed well.2. Equilibrium moisture content was affected a little by airflow rate, but affected mainly by the amount of heat added, to drying air. Equilibrium moisture content ranged from 12.2 to 13.2 percent wet basis for the continuous fan operation, from 10.4 to 11.7 percent wet basis for the intermittent fan operation respectively, in range of 1. 6 to 5. 9 degrees Centigrade average temperature rise of drying air.3. Average moisture content when top layer was dried to 15 percent wet basis ranged from 13.1 to 13.9 percent wet basis for the continuous fan operation, from 11.9 to 13.4 percent wet basis for the intermittent fan operation respectively, in the range of 1.6 to 5.9 degrees Centigrade average temperature rise of drying air and 18 to 24 percent wet basis initial moisture content. The results indicated that grain was overdried with the intermittent fan operation in any range of temperature rise of drying air. Therefore, the continuous fan operation is usually more effective than the intermittent fan operation considering the overdrying.4. For the continuous fan operation, the average temperature rise of drying air may be limited to 2.2 to 3. 3 degrees Centigrade considering safe storage moisture level of 13.5 to 14 perceut wet basis.5. Required drying time decrease ranged from 40 to 50 percent each time the airflow rate was doubled and from 3.9 to 4.3 percent approximately for each one degrees Centigrade in average temperature rise of drying air regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on required drying time.6. Required drying time increase ranged from 18 to 30 percent approximately for each 2 percent increase in initial moisture content regardless of the fan operation methods, in the range of 18 to 24 percent moisture.7. The intermittent fan operation showed about 36 to 42 percent decrease in required drying time as compared with the continuous fan operation.8. Drymatter loss decrease ranged from 34 to 46 percent each time the airflow rate was doubled and from 2 to 3 percent approximately for each one degrees Centigrade in average temperature rise of drying air, regardless of the fan operation methods. Therefore, the average temperature rise of drying air had a little effect on drymatter loss. 9. Drymatter loss increase ranged from 50 to 78 percent approximately for each 2 percent increase in initial moisture content, in the range of 18 to 24 percent moisture. 10. The intermittent fan operation: showed about 40 to 50 percent increase in drymatter loss as compared with the continuous fan operation and the increasing rate was higher at high level of initial moisture and average temperature rise.11. Year-to-year weather conditions had a little effect on required drying time and drymatter loss.12. The equations for estimating time required to dry top layer to 16 and 1536 wet basis and drymatter loss were derived as functions of the performance factors. by the least square method.13. Minimum airflow rates based on 0.5 percent drymatter loss were estimated.Minimum airflow rates for the intermittent fan operation were approximately 1.5 to 1.8 times as much as compared with the continuous fan operation, but a few differences among year-to-year.14. Required fan horsepower and energy for the intermittent fan operation were3. 7 and 1. 5 times respectively as much as compared with the continuous fan operation.15. The continuous fan operation may be more effective than the intermittent fan operation considering overdrying, fan horsepower requirements, and energy use.16. A method for estimating the required collection area of flat-plate solar collector using average temperature rise and airflow rate was presented.

Experimental Study on Combined Failure Damage of Bi-directional Prestressed Concrete Panel under Impact-Fire Loading (충돌 후 화재에 대한 이방향 프리스트레스트 콘크리트 패널부재의 복합 파괴손상에 관한 실험적 연구)

  • Yi, Na-Hyun;Lee, Sang-Won;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.429-440
    • /
    • 2014
  • Since the World Trade Center and Pentagon attacks in 2001, terror, military attack, or man-made disaster caused impact, explosion, and fire accident have frequently occured on civil infrastructures. However, structural behavior researches on major Prestressed Concrete (PSC) infrastructures such as bridges, tunnels, Prestressed Concrete Containment Vessel (PCCVs), and LNG tanks under extreme loading are significantly lacking. Especially, researches on possible secondary fire scenarios after terror, bombing, collision of vehicles and vessels on concrete structures have not been performed domestically where most of the past researches related to extreme loadings on structures focused on an independent isolated extreme loading scenario. Due to the outcry of public concerns and anxiety of potential terrorist attacks on major infrastructures and structures, a study is urgently needed at this time. Therefore, in this study, the bi-directional prestressed concrete $1400{\times}1000{\times}300mm$ panels applied with 430 kN prestressing force using unbonded prestressing thread bars were experimentally evaluated under impact, fire, and impact-fire combined loadings. Due to test site restrictions, impact tests were performed with 14 kN impactor with drop heights of 10m and 3.5 m to evaluate impact resistance capacity. Also, fire and impact-fire combined loading were tested using RABT fire loading curve. The measured residual strength capacities of PSC and RC specimens applied with impact, fire, impact-fire combined loadings were compared with the residual strength capacity of undamaged PSC and RC specimens for evaluation. The study results can be used as basic research data for related research areas such as protective design and numerical simulation under extreme loading scenarios.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Emission Rate of Greenhouse Gases from Bedding Materials of Cowshed Floor: Lab-scale simulation study (우사깔짚에서 발생되는 온실가스 배출량 산정: 모의 실험결과)

  • Cho, Won Sil;Lee, Jin Eui;Park, Kyu Hyun;Kim, Jeong Dae;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • To know the emission amount of greenhouse gases from bedding materials of cowshed floor, the emission rates of methane ($CH_4$) and nitrous oxide ($N_2O$) gases from a simulated cowshed floor (SCF) with sawdust that manure loading rate into the bedding material could be accurately controlled were assessed in this study. The manure loading rates of Korean beef and Holstein dairy cattle into the SCF of $0.258m^2$ surface area with 10 to 15 cm height sawdust were $1.586kg/m^2/d$ and $3.588kg/m^2/d$, respectively, and those were calculated on the basis of "Standard model for sustainable livestock" and "Data for excretion amount of manure from livestock". All experiments were done in triplicates in three different seasons (May to July, Sep. to Nov., and Feb. to Apr.) using 12 SCFs. The effects of bedding material thickness on $CH_4$ and $N_2O$ emission from SCFs for both Korean beef cattle and Holstein dairy cattle were not statistically significant (p<0.05). Emission amount of $CH_4$ and $N_2O$ per square meter of SCF for Holstein dairy cattle was 7.5 and 1.2 times higher than that of Korean beef cattle, respectively. The yearly $CH_4$ amount per head was 17.7 times higher in Holstein dairy cattle, obtaining 130.4 g/head/year from SCF for Holstein dairy cattle and 7.4 g/head/year from SCF for Korean beef cattle, and $N_2O$ was also 3.8 times higher in Holstein dairy cattle (3,267 g/head/year in Korean beef cattle and 14,719 g/head/year in Holstein dairy cattle). However, the $N_2O$-N per loaded nitrogen into SCF was higher in Korean beef cattle, having 0.2148 and 0.1632 kg $N_2O$-N/kg N in Korean beef cattle and Holstein dairy cattle, respectively, and those values were 3.07 and 2.33 times higher than that of Intergovernmental Panel on Climate Change (IPCC) 2006 guideline (GL) (0.07 kg $N_2O$-N/kg N).

Numerical Simulation of Residual Currents and tow Salinity Dispersions by Changjiang Discharge in the Yellow Sea and the East China Sea (황해 및 동중국해에서 양쯔강의 담수유입량 변동에 따른 잔차류 및 저염분 확산 수치모의)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.67-85
    • /
    • 2007
  • A three-dimensional hydrodynamic model with the fine grid is applied to simulate the barotropic tides, tidal currents, residual currents and salinity dispersions in the Yellow Sea and the East China Sea. Data inputs include seasonal hydrography, mean wind and river input, and oceanic tides. Computed tidal distributions of four major tides($M_2,\;S_2,\;K_1$ and $O_1$) are presented and results are in good agreement with the observations in the domain. The model reproduces well the tidal charts. The tidal residual current is relatively strong around west coast of Korea including the Cheju Island and southern coast of China. The current by $M_2$ has a maximum speed of 10 cm/s in the vicinity of Cheju Island with a anti-clockwise circulation in the Yellow Sea. General tendency of the current, however, is to flow eastward in the South Sea. Surface residual current simulated with $M_2$ and with $M_2+S_2+K_1+O_1$ tidal forcing shows slightly different patterns in the East China Sea. The model shows that the southerly wind reduces the southward current created by freshwater discharge. In summer during high runoff(mean discharge about $50,000\;m^3/s$ of Yangtze), low salinity plume-like structure(with S < 30.0 psu) extending some 160 km toward the northeast and Changjiang Diluted Water(CDW), below salinity 26 psu, was found within about 95 km. The offshore dispersion of the Changjiang outflow water is enhanced by the prevailing southerly wind. It is estimated that the inertia of the river discharge cannot exclusively reach the around sea of Cheju Island. It is noted that spatial and temporal distribution of salinity and the other materials are controlled by mixture of Changjiang discharge, prevailing wind, advection by flowing warm current and tidal current.

  • PDF