• Title/Summary/Keyword: Simulation Approach

Search Result 5,267, Processing Time 0.036 seconds

Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis (수치해석을 통한 급곡선 구간 Shield TBM의 중절잭 및 스킨플레이트 구조에 관한 연구)

  • Kang, Sin-Hyun;Kim, Dong-Ho;Kim, Hun-Tae;Song, Seung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.421-435
    • /
    • 2017
  • Recently, due to the saturation of ground structures and the overpopulation of pipeline facilities requires to development of underground structures as an alternative to ground structures. Thus, mechanized tunnel construction of the shield TBM method has been increasing in order to prevent vibration and noise problems in construction of the NATM tunnel for the urban infrastructure construction. Tunnel construction plan for the tunnel line should be formed in a sharp curve to avoid building foundation and underground structures and it is inevitable to develop a shield TBM technology that suits the sharp curve tunnel construction. Therefore, this study is about the structural stability technology of the articulation jack, shield jack and skin plate for the shield TBM thrust in case of the mechanized tunnel construction that is a straight and sharp curve line. The construction case study and shield TBM operation principle are examined and analyzed by the theoretical approach. The torque of the cutter head, the thrust of the articulation jack and the shield jack, the amount of over cutting for curve is important respectively in shield TBM construction of straight and sharp curve line. In addition, it is very important to secure the stability of the skin plate structure to ensure the safety of the inside worker. This study examines the general structure and construction of the equipment, experimental simulation was carried out through numerical analysis to examine the main factors and structural stability of the skin plate structure. The structural stability of the skin plate was evaluated and optimizes the shape by comparing the loads of the articulation jack by selecting the virtual soil to be applied in a straight and sharp curve line construction. Since the present structure and operation method of the shield TBM type in domestic constructions are very similar, this study will help to develop the localized shield TBM technology for the new equipment and the vulnerability and stability review.

Interaction Between TCP and MAC-layer to Improve TCP Flow Performance over WLANs (유무선랜 환경에서 TCP Flow의 성능향상을 위한 MAC 계층과 TCP 계층의 연동기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.99-111
    • /
    • 2008
  • In recent years, the needs for WLANs(Wireless Local Area Networks) technology which can access to Internet anywhere have been dramatically increased particularly in SOHO(Small Office Home Office) and Hot Spot. However, unlike wired networks, there are some unique characteristics of wireless networks. These characteristics include the burst packet losses due to unreliable wireless channel. Note that burst packet losses, which occur when the distance between the wireless station and the AP(Access Point) increase or when obstacles move temporarily between the station and AP, are very frequent in 802.11 networks. Conversely, due to burst packet losses, the performance of 802.11 networks are not always as sufficient as the current application require, particularly when they use TCP at the transport layer. The high packet loss rate over wireless links can trigger unnecessary execution of TCP congestion control algorithm, resulting in performance degradation. In order to overcome the limitations of WLANs environment, MAC-layer LDA(Loss Differentiation Algorithm)has been proposed. MAC-layer LDA prevents TCP's timeout by increasing CRD(Consecutive Retry Duration) higher than burst packet loss duration. However, in the wireless channel with high packet loss rate, MAC-layer LDA does not work well because of two reason: (a) If the CRD is lower than burst packet loss duration due to the limited increase of retry limit, end-to-end performance is degraded. (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily by Reducing the drainage speed of the network buffer due to the increase of CRD. In this paper, we propose a new retransmission module based on Cross-layer approach, called BLD(Burst Loss Detection) module, to solve the limitation of previous link layer retransmission schemes. BLD module's algorithm is retransmission mechanism at IEEE 802.11 networks and performs retransmission based on the interaction between retransmission mechanisms of the MAC layer and TCP. From the simulation by using ns-2(Network Simulator), we could see more improved TCP throughput and energy efficiency with the proposed scheme than previous mechanisms.

Economic Impact of the Tariff Reform : A General Equilibrium Approach (관세율(關稅率) 조정(調整) 경제적(經濟的) 효과분석(效果分析) : 일반균형적(一般均衡的) 접근(接近))

  • Lee, Won-yong
    • KDI Journal of Economic Policy
    • /
    • v.12 no.1
    • /
    • pp.69-91
    • /
    • 1990
  • A major change in tariff rates was made in January 1989 in Korea. The benchmark tariff rate, which applies to about two thirds of all commodity items, was lowered to 15 percent from 20 percent. In addition, the variation in tariff rates among different types of commodities was reduced. This paper examines the economic impact of the tariff reform using a multisectoral general equilibrium model of the Korean economy which was introduced by Lee and Chang(1988), and by Lee(1988). More specifically, this paper attempts to find the changes in imports, exports, domestic production, consumption, prices, and employment in 31 different sectors of the economy induced by the reform in tariff rates. The policy simulations are made according to three different methods. First, tariff changes in industries are calculated strictly according to the change in legal tariff rates, which tend to over-estimate the size of the tariff reduction given the tariff-drawback system and tariff exemption applied to various import items. Second, tariff changes in industries are obtained by dividing the estimated tariff revenues of each industry by the estimated imports for that industry, which are often called actual tariff rates. According to the first method, the import-weighted average tariff rate is lowered from 15.2% to 10.2%, while the second method changes the average tariff rate from 6.2% to 4.2%. In the third method, the tariff-drawback system is internalized in the model. This paper reports the results of the policy simulation according to all three methods, comparing them with one another. It is argued that the second method yields the most realistic estimate of the changes in macro-economic variables, while the third method is useful in delineating the differences in impact across industries. The findings, according to the second method, show that the tariff reform induces more imports in most sectors. Garments, leather products, and wood products are those industries in which imports increase by more than 5 percent. On the other hand, imports in agricultural, mining and service sectors are least affected. Domestic production increases in all sectors except the following: leather products, non-metalic products, chemicals, paper and paper products, and wood-product industries. The increase in production and employment is largest in export industries, followed by service industries. An impact on macroeconomic variables is also simulated. The tariff reform increases nominal GNP by 0.26 percent, lowers the consumer price index by 0.49 percent, increases employment by 0.24 percent, and worsens the trade balance by 480 million US dollars, through a rise in exports of 540 million US dollars and a rise in imports of 1.02 billion US dollars.

  • PDF

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Estimation of Forest Soil Carbon Stocks with Yasso using a Dendrochronological Approach (연륜연대학적 접근을 이용한 Yasso 모델의 산림토양탄소 저장량 추정)

  • Lee, Ah Reum;Noh, Nam Jin;Yoon, Tae Kyung;Lee, Sue Kyoung;Seo, Kyung Won;Lee, Woo-Kyun;Cho, Yongsung;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.791-798
    • /
    • 2009
  • The role of forest and soil carbon under global climate change is getting important as a carbon sink and it is necessary to research on applicable forest models as well as in the field for a study of these dynamics. On this study, historical annual litter dataset as a major input data for the forest soil carbon model, Yasso was established using a dendrochronological reconstruction method, and the soil carbon dynamics of a Pinus densiflora forest in Gwangneung, Korea was simulated using Yasso. The amount of litter (needle, branch, stem and fine root) production, which was estimated using the dendrochronological method, has increased continuously from 1971 to 2006. Furthermore, there was no significant error between estimated and measured values of litter production (needle and branch) in 2006. The average of simulated soil carbon stock up to 30 cm depth was $46.30{\pm}4.28tCha^{-1}$, which accounted for 53% of carbon stock in trees of the forest, and had no significant difference and error with measured soil carbon stock. Under the climate change trend in Korea according to IPCC A1B scenario, it was estimated that the simulated soil carbon stock in the region would increase continuously from 1971 to 2041 and then decreased until 2100. Compared to the result of the scenario that there is no climate change, the soil carbon stock could be decreased up to 7.58% at 2100. It was inferred the dendrochronological reconstruction method and simulation of Yasso model are useful to estimate soil carbon dynamics of the natural P. densiflora forest. Follow-up researches, such as improvement of the dendrochronological method and Yasso model and their application and validation in various environment, are needed to produce more reliable results.

A Study on the Guideline Amounts of Sugar, Sodium and Fats in Processed Foods Met to Children's Taste (어린이 기호식품의 당, 나트륨 및 지방류의 영양기준안 설정에 관한 연구)

  • Choi, Young-Sun;Chang, Nam-Soo;Joung, Hyo-Jee;Cho, Sung-Hee;Park, Hye-Kyung
    • Journal of Nutrition and Health
    • /
    • v.41 no.6
    • /
    • pp.561-572
    • /
    • 2008
  • Currently, Korea is facing dramatic nutrition transition among children, which may increase risk of degenerative diseases due to excessive intakes of fats, sugars and sodium. Promotion of eating healthier foods among children is difficult because the present nutrition label is not easily understood. Therefore, to promote healthier foods this study was aimed at developing guidance of standard amounts of high, medium and low levels of sugars, sodium, fats and other components contained in foods or drinks that are promoted to or formulated for consumption by children. Multipronged approach was used to collecting information, including key word searches in Medline and other databases, internet searches, reports from world organization, and contact of key individuals who work in organizations. We reviewed dietary reference intakes for Koreans, nutrient reference values, nutrient content claims of nutrition labeling, guideline daily amounts of United Kingdom, dietary guidelines and consumption data of nutrients, and selected components for labeling. And we decided goals of guideline daily amounts for children and nutrient criteria to underpin the high, medium and low content of each component. Then we collected data on processed foods sold at 12 middle schools and 11 high schools in Seoul, and classified processed foods into food category. Sales per one student per day were in the order of snacks, breads, and non-carbonated drinks. One hundred forty five mostly consumed products were selected and classified into criteria of high, medium and low total fat or sodium. Eighty five(58.6%) were classified into high fat food and only 11(7.6%) into high sodium food, in case that the base is chosen per 100 g or 100 mL. In conclusion, the nutrient criteria and choice of 100 g base, which we suggest in this study, need to be tested by simulation with more processed foods and refined in view of the practical issues suggested by stakeholders in future.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: I. Spherical Wave Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : I. 구형파 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.391-401
    • /
    • 2004
  • 3D imaging systems using 2D phased arrays have a large number of active channels, compelling to use a very expensive and bulky beamforming hardware, and suffer from low volume rate because, in principle, at least one ultrasound transmit-receive event is necessary to construct each scanline. A high speed 3D imaging method using a cross array proposed previously to solve the above limitations can implement fast scanning and dynamic focusing in the lateral direction but suffer from low resolution except at the fixed transmit focusing along the elevational direction. To overcome these limitations, we propose a new real-time volumetric imaging method using a cross array based on the synthetic aperture technique. In the proposed method, ultrasound wave is transmitted successively using each elements of an 1D transmit array transducer, one at a time, which is placed along the elevational direction and for each firing, the returning pulse echoes are received using all elements of an 1D receive array transducer placed along the lateral direction. On receive, by employing the conventional dynamic focusing and synthetic aperture method along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. In addition, in the proposed method, a volume of interest consisting of any required number of slice images, can be constructed with the same number of transmit-receive steps as the total number of transmit array elements. Computer simulation results show that the proposed method can provide the same and greatly improved resolutions in the lateral and elevational directions, respectively, compared with the 3D imaging method using a cross array based on the conventional fixed focusing. In the accompanying paper, we will also propose a new real-time 3D imaging method using a cross array for improving transmit power and elevational spatial resolution, which uses linear wave fronts on transmit.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

A Stochastic Study for the Emergency Treatment of Carbon Monoxide Poisoning in Korea (일산화탄소중독(一酸化炭素中毒)의 진료대책(診療對策) 수립(樹立)을 위한 추계학적(推計學的) 연구(硏究))

  • Kim, Yong-Ik;Yun, Dork-Ro;Shin, Young-Soo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.135-152
    • /
    • 1983
  • Emergency medical service is an important part of the health care delivery system, and the optimal allocation of resources and their efficient utilization are essentially demanded. Since these conditions are the prerequisite to prompt treatment which, in turn, will be crucial for life saving and in reducing the undesirable sequelae of the event. This study, taking the hyperbaric chamber for carbon monoxide poisoning as an example, is to develop a stochastic approach for solving the problems of optimal allocation of such emergency medical facility in Korea. The hyperbaric chamber, in Korea, is used almost exclusively for the treatment of acute carbon monoxide poisoning, most of which occur at home, since the coal briquette is used as domestic fuel by 69.6 per cent of the Korean population. The annual incidence rate of the comatous and fatal carbon monoxide poisoning is estimated at 45.5 per 10,000 of coal briquette-using population. It offers a serious public health problem and occupies a large portion of the emergency outpatients, especially in the winter season. The requirement of hyperbaric chambers can be calculated by setting the level of the annual queueing rate, which is here defined as the proportion of the annual number of the queued patients among the annual number of the total patients. The rate is determined by the size of the coal briquette-using population which generate a certain number of carbon monoxide poisoning patients in terms of the annual incidence rate, and the number of hyperbaric chambers per hospital to which the patients are sent, assuming that there is no referral of the patients among hospitals. The queueing occurs due to the conflicting events of the 'arrival' of the patients and the 'service' of the hyperbaric chambers. Here, we can assume that the length of the service time of hyperbaric chambers is fixed at sixty minutes, and the service discipline is based on 'first come, first served'. The arrival pattern of the carbon monoxide poisoning is relatively unique, because it usually occurs while the people are in bed. Diurnal variation of the carbon monoxide poisoning can hardly be formulated mathematically, so empirical cumulative distribution of the probability of the hourly arrival of the patients was used for Monte Carlo simulation to calculate the probability of queueing by the number of the patients per day, for the cases of one, two or three hyperbaric chambers assumed to be available per hospital. Incidence of the carbon monoxide poisoning also has strong seasonal variation, because of the four distinctive seasons in Korea. So the number of the patients per day could not be assumed to be distributed according to the Poisson distribution. Testing the fitness of various distributions of rare event, it turned out to be that the daily distribution of the carbon monoxide poisoning fits well to the Polya-Eggenberger distribution. With this model, we could forecast the number of the poisonings per day by the size of the coal-briquette using population. By combining the probability of queueing by the number of patients per day, and the probability of the number of patients per day in a year, we can estimate the number of the queued patients and the number of the patients in a year by the number of hyperbaric chamber per hospital and by the size of coal briquette-using population. Setting 5 per cent as the annual queueing rate, the required number of hyperbaric chambers was calculated for each province and for the whole country, in the cases of 25, 50, 75 and 100 per cent of the treatment rate which stand for the rate of the patients treated by hyperbaric chamber among the patients who are to be treated. Findings of the study were as follows. 1. Probability of the number of patients per day follows Polya-Eggenberger distribution. $$P(X=\gamma)=\frac{\Pi\limits_{k=1}^\gamma[m+(K-1)\times10.86]}{\gamma!}\times11.86^{-{(\frac{m}{10.86}+\gamma)}}$$ when$${\gamma}=1,2,...,n$$$$P(X=0)=11.86^{-(m/10.86)}$$ when $${\gamma}=0$$ Hourly arrival pattern of the patients turned out to be bimodal, the large peak was observed in $7 : 00{\sim}8 : 00$ a.m., and the small peak in $11 : 00{\sim}12 : 00$ p.m. 2. In the cases of only one or two hyperbaric chambers installed per hospital, the annual queueing rate will be at the level of more than 5 per cent. Only in case of three chambers, however, the rate will reach 5 per cent when the average number of the patients per day is 0.481. 3. According to the results above, a hospital equipped with three hyperbaric chambers will be able to serve 166,485, 83,242, 55,495 and 41,620 of population, when the treatmet rate are 25, 50, 75 and 100 per cent. 4. The required number of hyperbaric chambers are estimated at 483, 963, 1,441 and 1,923 when the treatment rate are taken as 25, 50, 75 and 100 per cent. Therefore, the shortage are respectively turned out to be 312, 791. 1,270 and 1,752. The author believes that the methodology developed in this study will also be applicable to the problems of resource allocation for the other kinds of the emergency medical facilities.

  • PDF