• Title/Summary/Keyword: Simulated annealing neural network

Search Result 33, Processing Time 0.024 seconds

The Comparison of Neural Network Learning Paradigms: Backpropagation, Simulated Annealing, Genetic Algorithm, and Tabu Search

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.696-704
    • /
    • 1998
  • Artificial neural networks (ANN) have successfully applied into various areas. But, How to effectively established network is the one of the critical problem. This study will focus on this problem and try to extensively study. Firstly, four different learning algorithms ANNs were constructed. The learning algorithms include backpropagation, simulated annealing, genetic algorithm, and tabu search. The experimental results of the above four different learning algorithms were tested by statistical analysis. The training RMS, training time, and testing RMS were used as the comparison criteria.

  • PDF

Development of a Modified Random Signal-based Learning using Simulated Annealing

  • Han, Chang-Wook;Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.179-186
    • /
    • 2015
  • This paper describes the application of a simulated annealing to a random signal-based learning. The simulated annealing is used to generate the reinforcement signal which is used in the random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural network. It is poor at hill-climbing, whereas simulated annealing has an ability of probabilistic hill-climbing. Therefore, hybridizing a random signal-based learning with the simulated annealing can produce better performance than before. The validity of the proposed algorithm is confirmed by applying it to two different examples. One is finding the minimum of the nonlinear function. And the other is the optimization of fuzzy control rules using inverted pendulum.

Inverse Analysis Approach to Flow Stress Evaluation by Small Punch Test (소형펀치 시험과 역해석에 의한 재료의 유동응력 결정)

  • Cheon, Jin-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1753-1762
    • /
    • 2000
  • An inverse method is presented to obtain material's flow properties by using small punch test. This procedure employs, as the objective function of inverse analysis, the balance of measured load-di splacement response and calculated one during deformation. In order to guarantee convergence to global minimum, simulated annealing method was adopted to optimize the current objective function. In addition, artificial neural network was used to predict the load-displacement response under given material parameters which is the most time consuming and limits applications of global optimization methods to these kinds of problems. By implementing the simulated annealing for optimization along with calculating load-displacement curve by neural network, material parameters were identified irrespective of initial values within very short time for simulated test data. We also tested the present method for error-containing experimental data and showed that the flow properties of material were well predicted.

Comparison of neural network algorithms for the optimal routing in a Multistage Interconnection Network (MIN의 최적경로 배정을 위한 신경회로망 알고리즘의 비교)

  • Kim, Seong-Su;Gong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.569-571
    • /
    • 1995
  • This paper compares the simulated annealing and the Hopfield neural network method for an optimal routing in a multistage interconnection network(MIN). The MIN provides a multiple number of paths for ATM cells to avoid cell conflict. Exhaustive search always finds the optimal path, but with heavy computation. Although greedy method sets up a path quickly, the path found need not be optimal. The simulated annealing can find an sub optimal path in time comparable with the greedy method.

  • PDF

Simulated Annealing Neural Network Model for Sequencing in a Mixed Model Assembly Line (혼합형 조립라인의 투입순서결정을 위한 시뮬레이티드 어닐링 신경망모형)

  • Kim, Man-Soo;Kim, Dong-Mook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-260
    • /
    • 1998
  • This paper deals with a simulated annealing neural network model for determining sequences of models inputted into a mixed model assembly line. We first present a energy function fitting to our problem, next determine the value of the parameters of the energy function using convergence ratio and the number of searched feasible solution. Finally we compare our model NMS with the modified Thomopoulos model. The result of the comparison shows that NMS and Thomopoulos offer a similar output in the problems having good smoothness.

  • PDF

An Optimization Method Wsing Simulated Annealing for Universal Learning Network

  • Murata, Junichi;Tajiri, Akihito;Hirasawa, Kotaro;Ohbayashi, Masanao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.183-186
    • /
    • 1995
  • A method is presented for optimization of Universal Learning Networks (ULN), where, together with gradient method, Simulated Annealing (SA) is employed to elude local minima. The effectiveness of the method is shown by its application to control of a crane system.

  • PDF

Study on Hybrid Search Method Using Neural Network and Simulated Annealing Algorithm for Apparel Pattern Layout Design (뉴럴 네트워크와 시뮬레이티드 어닐링법을 하이브리드 탐색 형식으로 이용한 어패럴 패턴 자동배치 프로그램에 관한 연구)

  • Jang, Seung Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2015
  • Pattern layout design is very important to the automation of apparel industry. Until now, the genetic algorithm and Tabu search method have been applied to layout design automation. With the genetic algorithm and Tabu search method, the obtained values are not always consistent depending on the initial conditions, number of iterations, and scheduling. In addition, the selection of various parameters for these methods is not easy. This paper presents a hybrid search method that uses a neural network and simulated annealing to solve these problems. The layout of pattern elements was optimized to verify the potential application of the suggested method to apparel pattern layout design.

A Study on Optimal Layout of Two-Dimensional Rectangular Shapes Using Neural Network (신경회로망을 이용한 직사각형의 최적배치에 관한 연구)

  • 한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3063-3072
    • /
    • 1993
  • The layout is an important and difficult problem in industrial applications like sheet metal manufacturing, garment making, circuit layout, plant layout, and land development. The module layout problem is known to be non-deterministic polynomial time complete(NP-complete). To efficiently find an optimal layout from a large number of candidate layout configuration a heuristic algorithm could be used. In recent years, a number of researchers have investigated the combinatorial optimization problems by using neural network principles such as traveling salesman problem, placement and routing in circuit design. This paper describes the application of Self-organizing Feature Maps(SOM) of the Kohonen network and Simulated Annealing Algorithm(SAA) to the layout problem of the two-dimensional rectangular shapes.

OptiNeural System for Optical Pattern Classification

  • Kim, Myung-Soo
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.342-347
    • /
    • 1998
  • An OptiNeural system is developed for optical pattern classification. It is a novel hybrid system which consists of an optical processor and a multilayer neural network. It takes advantages of two dimensional processing capability of an optical processor and nonlinear mapping capability of a neural network. The optical processor with a binary phase only filter is used as a preprocessor for feature extraction and the neural network is used as a decision system through mapping. OptiNeural system is trained for optical pattern classification by use of a simulated annealing algorithm. Its classification performance for grey tone texture patterns is excellent, while a conventional optical system shows poor classification performance.

  • PDF

Improved Convolutional Neural Network Based Cooperative Spectrum Sensing For Cognitive Radio

  • Uppala, Appala Raju;Narasimhulu C, Venkata;Prasad K, Satya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2128-2147
    • /
    • 2021
  • Cognitive radio systems are being implemented recently to tackle spectrum underutilization problems and aid efficient data traffic. Spectrum sensing is the crucial step in cognitive applications in which cognitive user detects the presence of primary user (PU) in a particular channel thereby switching to another channel for continuous transmission. In cognitive radio systems, the capacity to precisely identify the primary user's signal is essential to secondary user so as to use idle licensed spectrum. Based on the inherent capability, a new spectrum sensing technique is proposed in this paper to identify all types of primary user signals in a cognitive radio condition. Hence, a spectrum sensing algorithm using improved convolutional neural network and long short-term memory (CNN-LSTM) is presented. The principle used in our approach is simulated annealing that discovers reasonable number of neurons for each layer of a completely associated deep neural network to tackle the streamlining issue. The probability of detection is considered as the determining parameter to find the efficiency of the proposed algorithm. Experiments are carried under different signal to noise ratio to indicate better performance of the proposed algorithm. The PU signal will have an associated modulation format and hence identifying the presence of a modulation format itself establishes the presence of PU signal.