• Title/Summary/Keyword: Simulated Fuel

Search Result 591, Processing Time 0.036 seconds

SARAPAN-A Simulated-Annealing-Based Tool to Generate Random Patterned-Channel-Age in CANDU Fuel Management Analyses

  • Kastanya, Doddy
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.267-276
    • /
    • 2017
  • In any reactor physics analysis, the instantaneous power distribution in the core can be calculated when the actual bundle-wise burnup distribution is known. Considering the fact that CANDU (Canada Deuterium Uranium) utilizes on-power refueling to compensate for the reduction of reactivity due to fuel burnup, in the CANDU fuel management analysis, snapshots of power and burnup distributions can be obtained by simulating and tracking the reactor operation over an extended period using various tools such as the $^*SIMULATE$ module of the Reactor Fueling Simulation Program (RFSP) code. However, for some studies, such as an evaluation of a conceptual design of a next-generation CANDU reactor, the preferred approach to obtain a snapshot of the power distribution in the core is based on the patterned-channel-age model implemented in the $^*INSTANTAN$ module of the RFSP code. The objective of this approach is to obtain a representative snapshot of core conditions quickly. At present, such patterns could be generated by using a program called RANDIS, which is implemented within the $^*INSTANTAN$ module. In this work, we present an alternative approach to derive the patterned-channel-age model where a simulated-annealing-based algorithm is used to find such patterns, which produce reasonable power distributions.

A study on the Optimization of Hydrogen Production and Purification System for PEMFC (PEMFC에 사용되는 수소 생산 및 정화 기술 최적화 연구 )

  • SEOK KYUN KO;SANGYONG LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • A fuel handling process combined with a pressure swing adsorption system (PSA) was simulated to produce pure hydrogen with a purity greater than 99.97%. The simulation consists of two parts. The fuel processing part consisting of reformer and water-gas shift reaction was simulated with Aspen plus®, and the hydrogen purification part consisting of PSA was simulated with Aspen Adsorption®. In this study, the effect of reformer temperature and pressure on the total hydrogen production yield was investigated. Simulations were performed over a temperature range of 700 to 1,000℃ and a pressure range of 1 to 10 bar. The total hydrogen production yield increased with increasing temperature and decreasing pressure. The maximum hydrogen yield was less than 50% in the simulation and will be lower in the real process.

1D AND 3D ANALYSES OF THE ZY2 SCIP BWR RAMP TESTS WITH THE FUEL CODES METEOR AND ALCYONE

  • Sercombe, J.;Agard, M.;Struzik, C.;Michel, B.;Thouvenin, G.;Poussard, C.;Kallstrom, K.R.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.187-198
    • /
    • 2009
  • In this paper, three power ramp tests performed on high burn-up Re-crystallized Zircaloy2 - UO2 BWR fuel rods (56 to 63 MWd/kgU) within the SCIP project are simulated with METEOR and ALCYONE 3D. Two of the ramp tests are of staircase type up to Linear Heat Rates of 420 and 520 W/cm and with long holding periods. Failure of the 420 W/cm fuel rod was observed after 40 minutes. The third ramp test consisted of a more standard ramp test with a constant power rate of 80 W/cm/min up to 410 W/cm with a short holding time. The tests were first simulated with the METEOR 1D fuel rod code, which gave accurate results in terms of profilometry and fission gas releases. The behaviour of a fuel pellet fragment and of the cladding piece on top of it was then investigated with ALCYONE 3D. The size and the main characteristics of the ridges after base irradiation and power ramp testing were recovered. Finally, the failure criteria validated for PWR conditions and fuel rods with low-to-medium burn-ups were used to analyze the failure probability of the KKL rodlets during ramp testing.

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

Sensitivity simulation on isotopic fissile measurement using neutron resonances

  • Lee, YongDeok;Ahn, Seong-Kyu;Choi, Woo-Seok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.637-643
    • /
    • 2022
  • Uranium and plutonium are required to be accounted in spent fuel head-end and major recovery area in pyro-process for safeguards purpose. The possibility of neutron resonance technique, as a nondestructive analysis, was simulated on isotopic fissile analysis for large scale process. Neutron resonance technique has advantage to distinguish uranium from plutonium directly in mixture. Simulation was performed on U235 and Pu239 assay in spent fuel and for scoping examination of assembly type. The resonance energies were determined for U235 and Pu239. The linearity in the neutron transmission was examined for the selected resonance energies. In addition, the limit for detection was examined by changing sample density, thickness and content for actual application. Several factors were proposed for neutron production and the moderated neutron source was simulated for effective and efficient transmission measurement. From the simulation results, neutron resonance technique is promising to analyze U235 and Pu239 for spent fuel assembly. An accurate fissile assay will contribute to an increased safeguards for the pyro-processing system and international credibility on the reuse of fissile materials in the fuel cycle.

Development of High Efficiency Gas Turbine/Fuel Cell Hybrid Power Generation System (가스터빈/연료전지 혼합형 고효율 발전시스템 개발)

  • Kim Jae Hwan;Park Poo Min;Yang Soo Seok;Lee Dae Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.243-247
    • /
    • 2005
  • This paper describes an on-going national R&D program for the development of a gas turbine/fuel cell hybrid power generation system and related R&D activities. The final goal of this program is to develop a 200kW-c1ass gas turbine/fuel cell hybrid power generation system and achieve high efficiency over $60\%$ (AC/LHV). In the first phase of the development, a sub-scaled 60kW-class hybrid system based on the 50kW-class microturbine and the 5kW SOFC will be developed for the purpose of concept proof of the hybrid system. Core components such as the microturbine and the SOFC system are being developed and parallel preparation for system integration is being carried out. Before the core components are assembled in the final system. operating characteristics of a hybrid system are investigated from a simulated system where a turbocharger (microturbine simulator) and a modified fuel cell burner test facility (fuel cell simulator) are employed. The 60kW demonstration unit will be built up and operated to provide the valuable information for the preparation of the final full scale 200kW hybrid system.

  • PDF

A Platform Study of Fuel Consumption Measurements for an Excavator in Motion (동작중 굴삭기의 연료소모량 측정을 위한 측정 방법 기반 연구)

  • Kang, Ju Young;Choi, Jin Goo;Lee, Jeong Ho;Lee, Chung Geun;Ko, Sang Chul;Lee, Daeyup
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.35-40
    • /
    • 2017
  • Whereas fuel economy of a vehicle is measured using a chassis dynamometer, that of construction machinery such as an excavator shall be presumably measured using simulated work cycle. In order to measure fuel consumption under a simulated work cycle, a measurement methodology, while excavator operates in dynamic(transient) motion, needs to be examined and developed. In this work, three methods (gravimetry, ECU CAN signal and mass flow meter) are studied and compared. This work reveals that when ECU CAN signal is properly calibrated and evaluated, compared to gravimetry or mass flowmeter, it could be used to measure fuel consumption with accuracy and thus for approval of the fuel economy of construction machinery.