DOI QR코드

DOI QR Code

A study on the Optimization of Hydrogen Production and Purification System for PEMFC

PEMFC에 사용되는 수소 생산 및 정화 기술 최적화 연구

  • SEOK KYUN KO (Department of Mechanical, Robotics and Energy Engineering, Dongguk University) ;
  • SANGYONG LEE (Department of Mechanical, Robotics and Energy Engineering, Dongguk University)
  • 고석균 (동국대학교 기계로봇에너지공학과) ;
  • 이상용 (동국대학교 기계로봇에너지공학과)
  • Received : 2022.12.02
  • Accepted : 2023.02.02
  • Published : 2023.02.28

Abstract

A fuel handling process combined with a pressure swing adsorption system (PSA) was simulated to produce pure hydrogen with a purity greater than 99.97%. The simulation consists of two parts. The fuel processing part consisting of reformer and water-gas shift reaction was simulated with Aspen plus®, and the hydrogen purification part consisting of PSA was simulated with Aspen Adsorption®. In this study, the effect of reformer temperature and pressure on the total hydrogen production yield was investigated. Simulations were performed over a temperature range of 700 to 1,000℃ and a pressure range of 1 to 10 bar. The total hydrogen production yield increased with increasing temperature and decreasing pressure. The maximum hydrogen yield was less than 50% in the simulation and will be lower in the real process.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부와 에너지기술평가원의 지원을 받아 에너지기술개발사업의 "공공건물 대상 수소추출기 연계형 연료전지 안전실증(20203040030110)" 과제를 통하여 수행한 연구 과제이다.

References

  1. O. Pasdag, A. Kvasnicka, M. Steffen, and A. Heinzel, "Highly integrated steam reforming fuel processor with condensing burner technology for maximised electrical efficiency of CHPPEMFC systems", Energy Procedia, Vol. 28, 2012, pp. 5765, doi: https://doi.org/10.1016/j.egypro.2012.08.040. 
  2. S. I. Yang, D. Y. Choi, S. C. Jang, S. H. Kim, and D. K. Choi, "Hydrogen separation by multibed pressure swing adsorption of synthesis gas", Adsorption, Vol. 14, 2008, pp. 583590, doi: https://doi.org/10.1007/s104500089133x. 
  3. J. J. Lee, E. J. Woo, M. J. Kim, and C. H. Lee, "Compact H2 PSA process for Hydrogen station", Korean Society for New and Renewable Energy Journal of Autumn Conference, 2007, pp. 118121. Retrieved from http://www.koreascience.or.kr/article/CFKO200727465738473.pdf. 
  4. M. T. Ho, G. W. Allinson, and D. E. Wiley, "Reducing the cost of CO2 capture from flue gases using pressure swing adsorption", Industrial & Engineering Chemistry Research, Vol. 47, No. 14, 2008, pp. 48834890, doi: https://doi.org/10.1021/ie070831e. 
  5. Y. T. Seo, D. J. Seo, J. H. Jeong, and W. L. Yoon, "Design of an integrated fuel processor for residential PEMFCs applications", Journal of Power Sources, Vol. 160, No. 1, 2006, pp. 505509, doi: https://doi.org/10.1016/j.jpowsour.2005.12.098. 
  6. R. Soltani, M. A. Rosen, and I. Dincer, "Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production", International Journal of Hydrogen Energy, Vol. 39, No. 35, 2014, pp. 2026620275, doi: https://doi.org/10.1016/j.ijhydene.2014.09.161. 
  7. A. L. da Silva, L. F. P. Dick, and I. L. Muller, "Performance of a PEMFC system integrated with a biogas chemical looping reforming processor: a theoretical analysis and comparison with other fuel processors (steam reforming, partial oxidation and autothermal reforming)", International Journal of Hydrogen Energy, Vol. 37, No. 8, 2012, pp. 6580 6600, doi: https://doi.org/10.1016/j.ijhydene.2012.01.031. 
  8. R. T. Yang, "Gas separation by adsorption processes", Imperial College Press, UK, 1997, pp 5560. 
  9. J. Xiao, Y. Peng, P. Benard, and R. Chahine, "Thermal effects on breakthrough curves of pressure swing adsorption for hydrogen purification", International Journal of Hydrogen Energy, Vol. 41, No. 19, 2016, pp. 82368245, doi: https://doi.org/10.1016/j.ijhydene.2015.11.126. 
  10. L. B. Braga, J. L. Silveira, M. E. da Silva, C. E. Tuna, E. B. Ma chin, and D. T. Pedroso, "Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis", Renewable and Sustainable Energy Reviews, Vol. 28, 2013, pp. 166-173, doi: https://doi.org/10.1016/j.rser.2013.07.060. 
  11. Y. W. You, D. G. Lee, K. Y. Yoon, D. K. Moon, S. M. Kim, and C. H. Lee, "H2 PSA purifier for CO removal from hydrogen mixtures", International Journal of Hydrogen Energy, Vol. 37, No. 23, 2012, pp. 1817518186, doi: https://doi.org/10.1016/j.ijhydene.2012.09.044. 
  12. L. Riboldi and O. Bolland, "Determining the potentials of PSA processes for CO2 capture in integrated gasification combined cycle (IGCC)", Energy Procedia, Vol. 86, 2016, pp. 294-303, doi: https://doi.org/10.1016/j.egypro.2016.01.030.